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We propose the use of microcanonical analyses for numerical studies of peptide aggregation transitions.
Performing multicanonical Monte Carlo simulations of a simple hydrophobic-polar continuum model for
interacting heteropolymers of finite length, we find that the microcanonical entropy behaves convex in the
transition region, leading to a negative microcanonical specific heat. As this effect is also seen in first-
order-like transitions of other finite systems, our results provide clear evidence for recent hints that the
characterization of phase separation in first-order-like transitions of finite systems profits from this
microcanonical view.
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Thermodynamic phase transitions in macroscopic, infi-
nitely large systems are typically analyzed in the thermo-
dynamic limit of a canonical ensemble; i.e., the
temperature T is treated as an intensive external control
parameter adjusted by the heat bath, and the total system
energy E is distributed according to the Boltzmann-Gibbs
statistics. The probability for a macrostate with energy E is
given by p�E� � g�E� exp��E=kBT�=Z, where g�E� is the
density of states, Z the partition sum, and kB the Boltzmann
constant. As long as the microcanonical entropy S�E� �
kB lng�E� is a concave function of E, the microcanonical
(caloric) temperature T�E� � �@S�E�=@E��1 for fixed vol-
ume V and particle number N is a monotonically increas-
ing function of E. Consequently, the microcanonical spe-
cific heat CV�E� � @E=@T�E� � ��@S=@E�2=�@2S=@E2�
is positive. The specific heat can become negative only in
an energetic regime, where S�E� is convex. In this region,
the caloric T�E� curve exhibits a typical backbending,
which means that the system becomes colder with increas-
ing total energy. For this reason, the temperature T is not
the most appropriate control parameter, and the analysis
of such typically finite systems is more adequately per-
formed in the microcanonical ensemble, where the system
energy E is considered as the adjustable external parameter
[1,2].

It is a surprising fact that the backbending effect is
indeed observed in transitions with phase separation.
Although this phenomenon has already been known for a
long time from astrophysical systems [3], it has been
widely ignored since then as a somehow ‘‘exotic’’ effect.
Recently, however, experimental evidence was found from
melting studies of sodium clusters by photofragmentation
[4]. Bimodality and negative specific heats are also known
from nuclei fragmentation experiments and models [5,6],
as well as from spin models on finite lattices which expe-
rience first-order transitions in the thermodynamic limit
[7,8]. This phenomenon is also observed in a large number
of other isolated finite model systems for evaporation and
melting effects [9,10].

In this Letter, we demonstrate the usefulness of the
microcanonical ensemble for studies of the aggregation
process of small proteins (peptides), which, due to the
fixed inhomogeneous sequence of amino acids, are neces-
sarily systems of finite size. Understanding protein aggre-
gation is essential not only for gaining insights into general
mechanisms of protein folding but also for unraveling the
reasons for human diseases caused by protein clustering. A
well-known example is associated with Alzheimer’s dis-
ease, where a few identical small fragments of large pro-
teins show the tendency to form fibrils, e.g., the
hydrophobic A�16–22 segment of the �-amyloid peptide
A� [11].

Our results are based on computer simulations of a
simple continuum aggregation model for heteropolymers.
Since the hydrophobic force governs the tertiary folding
process resulting in a compact hydrophobic core sur-
rounded by a shell of mainly polar residues, in our model
the 20 amino acids naturally occurring in proteins are
classified as hydrophobic (A) and polar (B) [12]. For the
individual peptides, we employ the AB model [13] in three
spatial dimensions. At a mesoscopic length scale, this
coarse-grained model with virtual peptide bonds and vir-
tual bond angles has proven quite successful in the quali-
tative characterization of naturally observed protein
folding channels [14]. Keeping the same parameter sets
for the interaction of monomers of different polymers, the
model for the aggregate reads:

 E �
X

�

E���AB �
X

�<�

X

i�;j�

��ri�j� ;�i�; �j��; (1)

where � and � label the M polymers interacting with each
other, and i� and j� index the N monomers of the �th
polymer whose intrinsic energy is given by

 E���AB �
1

4

XN�2

i��1

�1�cos#i���
X

j�>i��1

��ri�j� ;�i�;�j��; (2)

with 0 � #i� � � denoting the bending angle between
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monomers i�, i� � 1, and i� � 2. The nonbonded inter-
residue pair potential

 ��ri�j� ;�i�; �j�� � 4�r�12
i�j�
� C��i�; �j��r

�6
i�j�
� (3)

depends on the distance ri�j� between the residues and on
their type, �i� � A;B. The long-range behavior is attrac-
tive for like pairs of residues [C�A; A� � 1, C�B;B� � 0:5]
and repulsive otherwise [C�A;B� � C�B;A� � �0:5]. The
lengths of all virtual peptide bonds are set to unity.

In our aggregation study, we have performed multica-
nonical simulations [15] for two identical peptides with
13 monomers and the sequence 13.1: AB2AB2ABAB2AB is
arbitrarily chosen from the Fibonacci series [13]. For con-
sistency, the simulations were repeated for pairs of identi-
cal homopolymers 2	 A13 and 2	 B13, as well as the
larger aggregates 3	 13:1 and 4	 13:1. In all cases,
aggregation behaviors of similar type as for the two-
peptide system were identified [16].

For the simulations of the 2	 13:1 system, the peptides
were confined in a periodic cube with edge lengths L � 40.
We varied the edge lengths to make sure that effects due to
this confinement are negligible. A sequence of spherical-
cap updates [17] and three-monomer corner rotations en-
sured an ergodic scan of the conformational space. After
performing 180 multicanonical recursions, a total number
of 2	 1010 updates was generated. The primary result of
these simulations is, up to an unimportant constant, the
density of states g�E� which has been precisely estimated
over about 100 orders of magnitude.

In Fig. 1(a), the microcanonical entropy S�E� � lng�E�
(kB 
 1) [18] is plotted (up to an unimportant additive
constant) for the two-peptide system, ranging from the
aggregate phase including the lowest energy found in the
simulation (Emin�E

�1�
AB;min�E

�2�
AB;min�E

�1;2�
AB;min��18:407)

to the phase of the fragmented polymers. The conformation
of the lowest-energy aggregate has a two-cap-like, globular
shape with a compact hydrophobic core jointly formed by
the two heteropolymers; see the inset in Fig. 1(a). It should
be noted that the individual conformations in the aggregate
strongly differ from the single-peptide ground states
(Esingle

min � �4:967 [17]), and their respective energies in
the aggregate are much larger (E�1�AB;min � �3:197,

E�2�AB;min � �3:798). The strongest contribution is due to

the interaction between the heteropolymers (E�1;2�AB;min �

�11:412).
The most interesting region in Fig. 1(a) is the phase

coexistence regime Eagg � �8:85 � E � 1:05 � Efrag,
where the entropy exhibits a convex intruder. The concave
hull H S�E� � S�Eagg� � E=Tagg, which is the tangent
connecting S�Eagg� and S�Efrag�, is the Gibbs construction.
Its slope defines the inverse of the aggregation tempera-
ture Tagg � 0:198. The interval �Q � Efrag � Eagg �

Tagg�S�Efrag� � S�Eagg�� � 9:90 is the latent heat required
to release interchain contacts at the aggregation tempera-

ture Tagg. The energy, where the difference �S�E� �
H S�E� � S�E� is maximal, is denoted as Esep, and the
associated maximum deviation is the surface entropy
�Ssurf 
 �S�Esep�. The derivative of the Gibbs construc-
tion gives the Maxwell line T�1

agg � const � 5:043 in the
reciprocal caloric T�1�E� curve, which is shown in
Fig. 1(b). A bijective mapping between T and E is possible
only for T > T> � 0:231 and T < T< � 0:169. This
means, for values above T> and below T<, that the tem-
perature T is a useful control parameter. The two-
heteropolymer system forms an aggregate for T < T<,
where the separation into individual polymers is not useful
because interpolymer attraction dominates over intrinsic
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FIG. 1 (color online). Aggregation transition from the micro-
canonical perspective: (a) microcanonical entropy S�E� (up to a
constant) and concave hull H S�E�, (b) inverse caloric tempera-
ture T�1�E�, and (c) specific heat CV�E�. The errors are very
small and therefore only shown for CV�E�.
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structure formation and the aggregate determines the
mesoscopic length and energy scale. On the other hand,
for T > T>, the polymers are only weakly interacting frag-
ments; i.e., they can be considered separately: The total
system energy is an extensive variable (E � E�1�AB � E

�2�
AB).

Only in these two temperature regions, the interpretation of
the canonical formalism is generic.

In the transition region T< � T � T>, however, the
interaction strength between the polymers is as strong as
intrinsic monomer-monomer attraction and cannot be ne-
glected. As a consequence of the convexity of S�E� in the
interval Eagg <E< Efrag, there is no one-to-one corre-
spondence between temperature and energy in the transi-
tion regime which results in the backbending effect:
Fragmentation of the aggregate leads to a decrease of
temperature, although the system energy increases. The
areas A� � T�1

agg�Esep � Efrag� � �S�Efrag� � S�Esep�� and
A� � T�1

agg�Esep � Eagg� � �S�Esep� � S�Eagg�� formed by
the Maxwell line and the T�1�E� curve as shown in
Fig. 1(b) are identical. These areas determine the interfa-
cial entropy �Ssurf � A� � A� [7], which is interpreted as
the loss of entropy due to the existence of the phase
boundary [19] between the aggregate and the fragment
macrostates of the polymers. Consequently, as the energy
of the total system is not extensive in the transition region,
E is the favored control parameter compared with T.
Therefore, the aggregation transition is more favorably
analyzed in the microcanonical ensemble, at least for
such finite systems like the heteropolymers in our study,
where an extension towards the thermodynamic limit is not
possible.

The most remarkable result is the negativity of the
specific heat of the system in the backbending region, as
shown in Fig. 1(c). A negative specific heat in the phase
separation regime is due to the nonextensitivity of the
energy of the two subsystems resulting from the interaction
between the polymers. ‘‘Heating’’ a large aggregate would
lead to the stretching of monomer-monomer contact dis-
tances; i.e., the potential energy of an exemplified pair of
monomers increases, while kinetic energy and, therefore,
temperature remain widely constant. In a comparatively
small aggregate, additional energy leads to cooperative
rearrangements of monomers in the aggregate in order to
reduce surface tension; i.e., the formation of molten globu-
lar aggregates is suppressed. As a consequence, kinetic
energy is transferred into potential energy and the tem-
perature decreases. In this regime, the aggregate becomes
colder, although the total energy increases.

Figure 2(a) shows the typical bimodal canonical energy
distribution H�E� � g�E� exp��E=kBTagg� close to the
transition temperature Tagg. The maximum points are iden-
tical with the energies of the phase boundaries Eagg and
Efrag, and the minimum is found at Esep [7]. For this reason,
the difference of the energies belonging to the maximum
points of the canonical distribution is identical with the
latent heat �Q. The minimum of this distribution coincides

with the energy Esep � �3:15, where the Maxwell line
crosses the T�1�E� curve in the backbending regime in
Fig. 1(b). These identifications are easily proven by setting
the logarithmic derivative of H�E� at Tagg to zero, which
yields @S�E�=@E � T�1

agg. The left-hand side is the recip-
rocal microcanonical temperature and thus T�1�E� � T�1

agg.
As is seen from Fig. 1(b), this equation has three solutions,
at Eagg, Esep, and Efrag. Therefore, H�E� possesses three
extremal points at exactly these energies. Another ex-
pected result of the correspondence between the canoni-
cal and microcanonical representations is that the inter-
facial surface entropy can be written as: �Ssurf �

kB ln�H�Eagg�=H�Esep�� � kB ln�H�Efrag�=H�Esep�� [7].
These expressions serve as convenient estimators of the
surface tension, which can be defined as � �
Tagg�Ssurf=R

2
agg, whereR2

agg is the square radius of gyration
of the aggregate.

A short remark shall also be devoted to a second, much
weaker transition that accompanies the aggregation tran-
sition. It is also of ‘‘backbending’’ type and can be ob-
served in the fragmentation region in Figs. 1(b) and 1(c)
close to E � �0:32. The associated transition temperature
is Tagg;2 � 0:178 and is, therefore, smaller than Tagg but
happens in the energetic region, where the population of
fragmented macrostates dominates. In fact, this effect is
difficult to understand and requires a system parameter that
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FIG. 2. Bimodal canonical energy distribution close to the
(a) aggregation temperature Tagg and (b) the subphase transition
near Tagg;2. Vertical dashed lines mark extremal points. The
corresponding energies in (a) are identical with those indicating
the phase boundaries in Fig. 1 and, in particular, to the crossing
points of the reciprocal caloric curve T�1�E� with the Maxwell
line in Fig. 1(b).
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allows the structural discrimination between macrostates.
A detailed microcanonical analysis of the square relative
distance between the centers of masses of the polymers
reveals [16] that for energies close to Efrag the system is in a
fragmented state, and the population of aggregated poly-
mers in this energy region is extremely small. The situation
is different for energies E< 0:22, where weakly stable
aggregated conformations and polymer fragments coexist.
Only for much smaller energies (E< Eagg), compact ag-
gregates dominate. Having this in mind, the transition can
also be understood from the canonical view. For tempera-
tures below Tagg;2 � 0:178, stable aggregates (solids) of
low energies (E< Eagg) dominate. Approaching Tagg;2, the
system enters the subphase of coexisting unstable premol-
ten aggregates of comparatively high energies (E �
�0:32) and already fragmented peptides. From Fig. 1(b),
we see that this process is also accompanied by cooling due
to monomer arrangements reducing surface tension. These
monomer translocations are, however, energetically unfav-
orable. Eventually, for temperatures larger than Tagg, con-
formations of weakly coupled separate fragments (liquid)
dominate. The intermediary subphase is never dominating
and is, therefore, unstable. After these remarks, this tran-
sition is already visible in the cusplike behavior of the left,
inner wing of the right fragmentation peak in Fig. 2(a).
Reweighting to the subphase transition temperature Tagg;2,
the bimodal structure of the canonical energy distribution
in this energy range is clearly revealed in Fig. 2(b).
Compared with the distribution at the aggregation transi-
tion in Fig. 2(a), the ratio between maximum and minimum
is small and, therefore, the surface tension is also. In
consequence, the transition between the solid and the
premolten, unstable aggregates is, compared with the ag-
gregation transition, negligibly weak. Note that the aggre-
gation peak, not shown in Fig. 2(b), is much more
pronounced than the peaks of the premolten aggregates at
E � �0:32 and fragments at E � 0:73.

In this Letter, we have shown by employing a meso-
scopic hydrophobic-polar heteropolymer aggregation
model that the aggregation transition is a phase separation
process, where the loss of entropy due to the existence of
the phase boundary results in negative specific heat. This is
an effect which is guided by changes of the interfacial
entropy as a result of surface effects. Therefore, this effect
is expected to disappear in the thermodynamic limit of
macroscopic systems. It should strongly be emphasized,
however, that peptides and proteins, like the exemplified
model heteropolymers used in our study, are necessarily
systems of finite length and a thermodynamic limit cannot
be defined. For this reason, standard canonical formalisms
for the analysis of conformational pseudophase transitions
with phase separation are not suitable for these systems,
since the temperature is not a unique control parameter and
the total system energy measured in units of energy scales
of mesoscopic particles (e.g., aggregates or single poly-
mers) is not an extensive, separable quantity. In such cases,

microcanonical thermodynamics with the energy itself as
the external control parameter provides a more favorable
basis for the study of first-order-like transitions. The inter-
esting phenomenon of the negativity of the microcanonical
specific heat in peptide aggregation should be motivation
for an experimental verification which is still pending.
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