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We have performed multicanonical computer simulations of asmall system of short protein-
like heteropolymers and found that their aggregation transition possesses similarities to first-
order phase separation processes. Not being a phase transition in the thermodynamic sense, the
observed folding-binding behavior exhibits fascinating features leading to the conclusion that
the temperature is no suitable control parameter in the transition region. More formally, for
such small systems the microcanonical interpretation is more favorable than the typically used
canonical picture.

1 Introduction

Folding-bindingand docking processes between proteins are significant for catalysis, trans-
port, and cell stabilization in biological systems. Also, gene replication and expression are
impossible without defined binding mechanisms of molecules. However, the mutual influ-
ence of proteins on each other can also result in refolding ofproteins (which often leads to
the loss of their functionality and thus biological activity) or cluster formation. In the latter
case, proteins self-assemble and form aggregates. The effects of plaque can be disastrous
and cause heavy diseases: First, the assembled proteins lose their individual functionality
and second, in the passive case, the aggregates hinder transport and signal exchange pro-
cesses which are significant for the life of cells. In an active process, specific aggregates
might be able to bind to cell membranes and to change the membrane morphology, e.g., by
forming pores. In the amyloid hypothesis for the onset of Alzheimer’s disease, for exam-
ple, aggregates of Aβ proteins are believed to form pores in membranes of neuron cells,
thus opening ion channels for neurotoxic calcium.1

We focus here on thermodynamic properties of the aggregation transition of small pep-
tides. For this purpose, a simple hydrophobic-polar aggregation model is introduced and
employed in a multicanonical study of a few short heteropolymers.2, 3

2 Aggregation Model

For the aggregation study, we extend the AB model4 by an additional interchain interaction
between theM heteropolymers. As in the single-chain model, which has proven to be quite
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useful in qualitative studies of tertiary folding behavior,5 only two types of amino acids are
considered: hydrophobic residues (A) which avoid contact with the polar environment and
polar residues (B) being favorably attracted by the solvent. The single-chain energy of the
µth heteropolymer (µ = 1, . . . ,M ) composed ofNµ monomers is given by4

E
(µ)
AB =

1

4

∑

iµ

(1 − cosϑiµ
) +

∑

jµ>iµ+1

Φ(riµjµ
;σiµ

, σjµ
), (1)

where0 ≤ ϑiµ
≤ π denotes the virtual bending angle between the monomersiµ, iµ + 1,

andiµ + 2. Not discriminating nonbonded interactions between monomers of the same or
different polymers, our aggregation model reads2

E =
∑

µ

E
(µ)
AB +

∑

µ<ν

∑

iµ,jν

Φ(riµjν
;σiµ

, σjν
), (2)

where µ, ν label theM polymers interacting with each other, andiµ, jν index the
monomers of the respectiveµth andνth polymer. The nonbonded interresidue pair po-
tential Φ(riµjν

;σiµ
, σjν

) = 4[r−12
iµjν

− C(σiµ
, σjν

)r−6
iµjν

] depends on distanceriµjν
and

residue typeσiµ
= A,B. The long-range behavior is attractive for like pairs of residues

[C(A,A) = 1, C(B,B) = 0.5] and repulsive otherwise [C(A,B) = C(B,A) = −0.5].
The length of all virtual peptide bonds is unity. In this short note, we focus on a sys-
tem of two identical chains with the Fibonacci sequenceAB2AB2ABAB2AB, where the
single-chain properties are known.6 Our primary interest is devoted to the phase behavior
of the system and for this purpose, the density of statesg(E) is a suitable quantity that we
obtained by means of multicanonical computer simulations.7

3 Microcanonical vs. Canonical View

The Hertz definition of the microcanonical entropy is given by S(E) = kB ln Γ(E), where
kB is the Boltzmann constant (kB = 1 in our simulations) andΓ(E) =

∫ E

Emin
dE′ g(E′)

(whereEmin is the ground-state energy) is the phase-space volume. In Fig. 1, S(E) is
shown for our two-peptide system. Interestingly, in the energy region betweenEagg and
Efrag the entropy exhibits a convex behavior, which is a strong indication for surface effects
within this small system.8 Also shown in Fig. 1 is the corresponding concave hullHS(E),
i.e., the Gibbs construction. The surface entropy, defined as ∆S(E) = HS(E) − S(E)
is maximal at the energyEsep. The reason for the nonvanishing surface entropy is that
the transition between the fragmented, i.e., separated chains, and the formation of a joint
aggregate is a process with phase separation which is “delayed” due to steric surface effects
reducing the entropy of the total system. Since entropy reduction is only achieved by
additional energy consumption, the surprising side effectis that in the transition regime the
aggregate becomes colder with increasing system energy. This is verified by considering
the caloric temperature which is defined viaT−1(E) = ∂S(E)/∂E, also shown in Fig. 1.
Actually, in the transition region,T−1(E) bends back with increasing energy.

Consequently, there is no unique mapping between temperature and energy in the tran-
sition region (or more precisely, within the boundsT−1

< andT−1
> indicated in Fig. 1). Thus

the temperature should not be considered as a suitable external control parameter. From
a statistical point of view this means that for transitions with phase separation in small
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Figure 1. Microcanonical Hertz entropyS(E), concave Gibbs hullHS(E), and inverse caloric temperature
T−1(E) as functions of energy. The phase separation regime is bounded by Eagg and Efrag; the tem-
perature region, where temperature is no suitable externalcontrol parameter and the canonical interpretation
breaks down, ranges fromT−1

< to T−1
> . The slope of the Gibbs hull defines the aggregation temperature,

T−1
agg = ∂HS(E)/∂E = const.

systems a microcanonical interpretation is preferred overthe typically used canonical for-
malism. Since the backbending effect in the peptide aggregation process is a real physical
effect, it should also be accessible to experimental verification, as it has indeed already
been observed, for example, in experiments of sodium cluster formation processes.9
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