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a b s t r a c t

In a common approach to multiscale simulation, an incomplete set of macroscale equations must
be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from
these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by
interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike
previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional
space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need
for a central database, and is designed to parallelize well on large computer clusters. To demonstrate
our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous
Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈50 × N0.14 fine-scale
simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as
Equation Free methods, may also benefit from spatial adaptive sampling.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A key challenge in physics and engineering is the development
of simplified, coarse-grained descriptions of complex, fine-scale
systems. The development of new coarse-graining and multi-
scale modeling techniques is a highly active field [1–6]. Coarse-
graining approaches relevant to atomistic dynamics include the
Mori–Zwanzig [7,8] formalism and its subsequent developments
[9,10], ‘‘coarse-grained molecular dynamics’’ to seamlessly refine
continuum models down to atomistic detail [11,12], techniques
such as ‘‘dissipative particle dynamics’’ [13] and the ‘‘multi-scale
coarse-grained’’ method [14,15], among others.

A particularly rich and important topic is the multiscale cou-
pling between these coarse grained models and their fine-scale
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counterparts. For example, if atomistic detail is desired in only a
small spatial region, then domain decomposition may be used to
treat the remainder of the system at a coarse-grained, continuum
level. Various matching strategies at the atomistic–continuum
interface have been employed for dense fluids [16–18] and
solids [19–22], with special attention paid to dynamical effects
such as phonon propagation and heat transfer [23–28].

Often, however, multiscale coupling is required throughout the
entire system. Coarse-grained models are necessarily incomplete
due to missing information associated with neglected microscopic
degrees of freedom. Several multiscale strategies to augment the
coarse-grained model with data obtained from fine-scale simula-
tions have been proposed [29–33]. These strategies are effective
when the problem has a physical ‘‘separation of scales’’, and the
statistical information collected at the fine-scale can be meaning-
fully extended to the coarse-grained level. When this approach
is applied to physical simulation, the calculation of fine-scale
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statistical quantities typically consumes the vast majority of com-
putational work. By contrast, the integration of the coarse-scale
equations themselves is practically free.

In this paper we introduce spatial adaptive sampling to reduce
the amount of fine-scale simulation required in multiscale model-
ing. Previously proposed adaptive sampling involved storing the
results of all fine-scale simulations in a database; interpolation
from this database reduces the need for future fine-scale simu-
lations [34,35]. However, database lookup and interpolation can
be expensive, as it occurs within the potentially very high dimen-
sional input-space (i.e., the space of inputs to the fine-scale sim-
ulations). In our spatial adaptive sampling approach, we instead
interpolate in the d ≤ 3 dimensional spatial domain (i.e., spa-
tial coordinates x, y, and z). All necessary fine-scale simulations
are spawned at the current time step, and no database is required.
Another advantage of our approach is that we avoid the need to
interpolate in the high dimensional input-space. Whereas tradi-
tional adaptive interpolation can be likened to building a surrogate
model of the fine-scale response at all times [36], our real-space
approach specializes to the current time step. The simplicity of our
approach yields practical efficiency gains. In particular, interpola-
tion in d ≤ 3 dimensions is straightforward, and we avoid load
balancing difficulties associated with synchronizing the fine-scale
response database across large computer clusters [37].

To demonstrate spatial adaptive sampling,we consider a simple
multiscalemodel of elastodynamics [38] based upon theHeteroge-
neousMultiscale Method (HMM) [32,33]. Here, the coarse-grained
(macroscale) model is the set of continuum conservation laws for
mass, momentum, and energy. These equations are closed by a
fine (micro) scale, molecular dynamics (MD) model that provides
constitutive data in the form of momentum and energy fluxes.
We efficiently and accurately resolve shock propagation by de-
voting the great majority of our microscale computational effort
to the immediate vicinity of the propagating shock. In this sense,
our approach is analogous to adaptive mesh refinement (AMR, e.g.,
Refs. [39,40] for conservation laws in two and three dimensions),
in which there are more fine-scale model evaluations in regions
where the response is more rapidly varying. Unlike AMR, however,
our approach can be based upon any discretization scheme for the
macro-solver, and directly generalizes to arbitrarily complicated
macroscale equations. Our approach also generalizes to othermul-
tiscale frameworks, such as Equation Free methods [30].

In developing our spatial adaptive sampling method, we took
special care to ensure efficient parallelization across large-scale
computer clusters. In particular, the number and the location of
fine-scale simulations are completely determined at the beginning
of each macroscopic time step, enabling an efficient distribution
of the workload. In our simulations of one-dimensional shock
propagation with 0.1% target accuracy and N ≫ 1 grid points,
we observe that approximately 4 × 50 × N0.14 fine-scale MD
simulations are required at each integration step—a potentially
great improvement over naïve HMM, which requires 4 × N fine-
scale simulations per time step.

2. Review of the heterogeneous multiscale method

We introduce our spatial adaptive sampling approach in the
context of HMM [33], which begins with a microscale dynamical
model and then derives a ‘‘coarse grained’’ macroscale representa-
tion of this dynamics. We apply MD at the microscale and a sys-
tem of conservation laws for mass, momentum, and energy at the
macroscale [38]. These conservation laws, by themselves, are in-
complete. To close the macroscale equations, one requires consti-
tutive data from the microscale in the form of fluxes. It is through
this closure that the micro and macroscales are coupled. The goal
of HMM, then, is to construct a macroscale dynamics on physically
relevant length and time scales, while retaining the accuracy of the
microscale model.

Real materials are replete with heterogeneous defects includ-
ing interstitials, vacancies, dislocations, grain boundaries, phase
boundaries etc. Such defects pose an essential difficulty for HMM,
and two approaches are standard [32,33]. In the ‘‘type B’’ approach,
one assumes the coarse grained fields are a statistically complete
description of the system. In particular, each defect must be faith-
fully representedmacroscopically. This approach has been demon-
strated, e.g., for martensitic phase transformation dynamics [38]
and combustion front tracking [41]. Alternatively, in the ‘‘type A’’
approach, one uses domain decomposition to simulate isolated de-
fects with full microscopic accuracy. This approach has been ap-
plied, e.g., to the propagation of a single crack [28]. In both type A
and B approaches, HMM is practical for the study of a small number
of isolated defects. A third approach, common inmaterials science,
would posit a phenomenological description of the coarse grained
defect distribution and dynamics. This third approach is less com-
patiblewith the philosophy of HMMbecause hysteresis and ergod-
icity breaking makes it difficult to control errors.

In this work, we avoid difficulties associated with material
defects and consider a simple demonstration problem: elastody-
namic shock propagation in a perfect crystal. The macroscopic
conservation laws are closed with momentum and energy fluxes
calculated microscopically through an averaged MD stress. HMM
makes the key assumption of separation of scales. Here, we assume
that the microscopic MD simulations are ergodic and that stress is
a unique function of the macroscopic inputs, with no history de-
pendence. Under these assumptions, it is valid to extend the mi-
croscopically averaged stress to macroscopic scales. The HMM er-
godicity assumption would fail for more realistic materials with,
e.g., strain hardening due to defects. Such difficulties are absent in
our defect-free crystal.

HMM begins with a microscale dynamics, in our case Newton’s
equations,
ẋi = vi (1)
mivi = −∇xiV , (2)
where mi, xi, and vi are the mass, position, and velocity of particle
i. For simplicity we assume that the potential energy is a sum of
pairwise interactions,

V =
1
2


i≠j

φ(xij(t)),

where xij(t) = xi(t)−xj(t). If we reexpress the mass, momentum,
and energy densities as distributions,

ρ(x, t) =


i

miδ(x − xi(t)) (3)

q(x, t) =


i

mivi(t)δ(x − xi(t)) (4)

e(x, t) =


i


1
2
miv2i +

1
2


j≠i

φ(xij(t))


δ(x − xi(t)), (5)

then Newton’s equations become a set of conservation laws
[42,38],
∂tρ + ∇x · q = 0 (6)
∂tq + ∇x · τ = 0 (7)
∂te + ∇x · j = 0. (8)
Fluxes are most simply expressed as spatial averages over the
domain Ω . The average momentum flux is

τΩ =
1

|Ω|


Ω

τ(x) ddx

= −
1

|Ω|


i,j

cij

δijmivi ⊗ vi + fij ⊗ xij


, (9)
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and the energy flux is

jΩ =
1

2|Ω|


i,j

cij


vi


1
2
miv2i δij + φ(xij)


−

1
2
(vi + vj) · fijxij


.

(10)

In the above, fij is the force applied on atom i by atom j. The param-
eter 0 < cij < 1 represents the fraction of the line connecting xi
and xj that lies within Ω . For a computational domain with peri-
odic boundary conditions, cij = 1.

Wenote that the center-of-mass velocity v̄of the regionΩ is not
subtracted from the velocities vi appearing in the Irving–Kirkwood
stress τ . Consequently, τ differs from the virial stress σ (equiva-
lently, the continuum Cauchy stress [43]) by an amount τ − σ =

ρv̄ ⊗ v̄.
Eqs. (6)–(10) form the basis of the HMM recipe. The conserved

fields ρ, q, and E may be coarse-grained and integrated on
macroscopic space and time scales, while the fluxes τ and J may
be estimated as statistical MD averages on microscales. This HMM
coupling is valid assuming ergodicity ofMD, and assuming that the
state (ρ, q, and E) uniquely determines the fluxes (τ and j).

The conservation laws of Eqs. (6)–(8) are expressed in Eulerian
coordinates x(t) = x0+u(t), whereu is the displacement from the
undeformed material position x0. To model material deformation,
it is convenient to work in Lagrangian coordinates x0, where the
equivalent conservation laws are [38]

ρ0∂tA − ▽x0 q
0

= 0 (11)

∂tq0
− ▽x0 ·τ 0

= 0 (12)

∂te0 + ▽x0 ·j0 = 0, (13)

whereA = ▽x0 x is the deformation tensor. Themass,momentum,
and energy densities are now expressed per unit Lagrangian
volume,

ρ0(x0) = ρ(x) detA (14)

q0(x0) = q(x) detA (15)

e0(x0) = e(x) detA. (16)

Li and E [38] derived the averaged Lagrangian fluxes as analogues
of Eqs. (9) and (10), but lacking kinetic energy terms:

τ 0
Ω ′;L&E = −

1
|Ω ′|


i,j

cijfij ⊗ x0ij (17)

j0Ω ′;L&E = −
1

4|Ω ′|


i,j

cij(vi + vj) · fijx0ij, (18)

where Ω ′ denotes a reference volume in Lagrangian coordinates.
The flux τ 0 in Eq. (17) is interpreted as the first Piola–Kirchoff stress
tensor [38]. These equations are validwhen themicroscale dynam-
ics is fully Lagrangian [44,45]. However, actual MD simulation is
almost always performed in Eulerian coordinates, where the lack
of kinetic energy terms in Eqs. (17) and (18) was found to be in-
valid [43] (contradicting earlier work [46]). In our implementation,
we calculate the Lagrangian fluxes by straightforward transforma-
tion of the Eulerian ones in the center-of-mass frame,

τ 0
= (A−1σ)T detA (19)

j0 = (A−1jc.o.m.)
T detA. (20)

The instantaneous Eulerian fluxes σ and jc.o.m. corresponding to an
MD state are given by Eqs. (9) and (10) respectively, but with all
atom velocities vi replaced by vi − v̄, where v̄ is the center-of-mass
velocity of the region Ω . Proper derivation of these Lagrangian
fluxes is subtle, and beyond the scope of this article.
For simplicity, wework in the special case of a one-dimensional
deformation. That is, the deformation gradient A is restricted to a
single component A11 representing stretch along the x axis. In this
case, the Lagrangian equations of motion reduce to [38]

ρ0∂tA11 − ∂xq01 = 0 (21)

∂tq01 − ∂xσ11 = 0 (22)

∂te0 − ∂x(σ11v1) = 0. (23)

Thus, a three-dimensional MD simulation must provide only a
single quantity, the (x, x) component of the usual virial stress σ
(i.e. the continuum Cauchy stress [43].)

In the HMM scheme, we integrate the conserved quantities A11,
q01 and e0 on themacroscale. To complete the dynamical equations,
the averaged virial stress σ11 must be provided by microscale
simulation. At each relevant macroscale point x0 we perform MD
simulation of a perfect reference crystal in a volume deformed by
an amount a11 along the x component, and with total Lagrangian
energy density e0. Note that the macroscale quantity q01 sets
the overall MD center-of-mass velocity, and can be ignored. We
evolve the MD simulations until the estimate of virial stress σ11 is
obtained with sufficient accuracy at each macroscale point x0. The
MD estimated stresses are then used to perform one macroscale
integration time step.

3. Numerical integration of conservation laws

The HMM macroscale dynamics is a system of conservation
laws, Eqs. (6)–(8) (or in the Lagrangian form, Eqs. (11)–(13)), which
may be expressed generically as

∂tw + ∂xf(w) + ∂yg(w) + ∂zh(w) = 0, (24)

where w is a collection of conserved fields and f, g and h are
the corresponding spatial components of flux. Many integration
techniques are possible [47]. In one dimension, where g = h = 0,
a particularly simple scheme is due to Nessyahu and Tadmor [48].
This second-order accurate shock-preserving scheme integrates
the fieldsw on a staggered space–time grid,

wn+1/2
k = wn

k −
∆t
2∆x

∂xfnk (25)

wn+1
k+1/2 =

wn
k + wn

k+1

2
+

∆x
8


∂xwn

k − ∂xwn
k+1


−

∆t
∆x


fn+1/2
k+1 − fn+1/2

k


, (26)

where subscripts and superscripts denote space and time indices
respectively,

wn
k = w(k∆x, n∆t). (27)

The derivatives ∂x above are definedwith slope limiters to suppress
unphysical oscillations at a shock. For each conserved fieldw in the
collectionw, we use [49,50],

∂xw
n
k = MM


wn

k+1 − wn
k

∆x
,
wn

k+1 − wn
k−1

2∆x
,
wn

k − wn
k−1

∆x


,

and the analogous expression for ∂xf nk . The MinMod function is
defined as

MM (v1, v2, . . .) =


min

p
{vp} if vp > 0 ∀p

max
p

{vp} if vp < 0 ∀p

0 otherwise.

The Nessyahu–Tadmor central, staggered integration scheme is
readily generalized to systems of conservation laws in d > 1
dimensions [51].
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a b c

Fig. 1. Schematic illustration of our spatial adaptive sampling scheme applied to the simple problem of elastodynamic shock propagation in one-dimension. (a) Shock
propagation dynamics occurs on macroscopic space and time scales. Red dots denote representative microscopic regions of the system, each of which is modeled by ∼103

atoms of a defect-free fcc Cu crystal. (b) The heterogeneousmultiscalemethod (HMM) integrates conservation laws to determine the dynamical evolution of themacroscopic
fields. Constitutive data is provided by the stochastic estimates ofmicroscopic molecular dynamics simulations, performed on a regular grid. (c) In spatial adaptive sampling,
we dynamically adapt the location of microscopic simulations to increase the accuracy and efficiency of the HMM simulation. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
4. Predictive spatial adaptive sampling for full parallelism

Fig. 1 illustrates our approach in the context of one-dimensional
elastodynamics. At a macroscopic level, the system configuration
is represented by the A11 component of the deformation gradient
tensor [Fig. 1(a)], the velocity, and the energy density fields.
Macroscopic quantities such as the stress field are represented by
microscopic samples of the system. According to HMM, we can
use MD simulations at the microscale to estimate the local stress,
and to evolve the system at the macroscale [Fig. 1(b)]. These MD
simulations are the dominant computational cost of HMM. Our
new technique of spatial adaptive sampling greatly improves the
efficiency by interpolating the stress field from a small number
of MD simulations performed at carefully selected spatial sample
points [Fig. 1(c)].

Many types of interpolation are possible. Our experiments with
linear interpolation indicate that sharp cusps in the stress tend
to destabilize the Nessyahu–Tadmor integration scheme. Instead,
we choose Akima splines [52] to smoothly approximate shocks,
without introducing unphysical oscillations.

It remains to describe the procedure in which spatial sample
points are selected to best reconstruct the stress field. A natural
and direct approach is to recursively add sample points until the
estimated accuracy of the interpolated stress satisfies an error tol-
erance. This iterative refinement approach minimizes the number
of sample points, but has the disadvantage that the corresponding
MD simulations cannot be executed in parallel. This synchroniza-
tion drawback is especially pronounced for shock dynamics, where
the highest resolution is required at a very limited spatial region,
the shock front.

We introduce a predictive approach to spatial adaptive sam-
pling, in which the number and location of all sample points are
selected at the beginning of the macroscale time step. The corre-
sponding MD simulations are then fully independent and can be
executed in parallel. To predict important sample points, we use
two heuristics: (1) higher resolution is likely to be required in re-
gions where the macroscale fields are rapidly varying, and (2) the
important sample points from the previous time step are corre-
lated with the important sample points at the current time step.

Listing 1 presents our predictive sampling algorithm in the
context of general conservation law dynamics, equation (24).
The conserved fields w(x, t) = {w1(x, t), w2(x, t), . . .} include
the deformation gradient, velocity, and energy. To integrate
the conservation laws, we require MD-based flux estimates
f(w(x, t)) = {f1(x, t), f2(x, t), . . .}. In our one-dimensional shock
problem, the fluxes can be reconstructed from the single stress
component σ11. We discretize the conserved fields and fluxes on a
regular grid, such thatwn

i;k denotes the ith conserved field at the kth
position and nth macroscopic time step. f ni;k denotes the analogous
flux. We express the sets of field and position indices as I and K
respectively.

At the beginning of the nth macroscopic time step, the
conserved fieldswn

i;k are known for all i ∈ I and k ∈ K . Our goal is
Listing 1: Algorithm to construct a set of spatial sample points
k ∈ Sn from which to interpolate the flux fields fn(wn) (indexed
by i) for the current time step n. A sample point k is considered
important if any of the conserved fieldswn are rapidly varying at k
(gradientSampling), or if k was important for interpolation at the
previous time step (holdoutSampling). The accuracy is controlled
by dimensionless threshold parameters ϵi;g and ϵi;h.
def gradientSampling (Sn ) :

for k ∈ K :
i f ∆x|∇wn

i;k/w
0
i;k| > ϵi;g for any i ∈ I :

add k to set Sn

def estimatedInterpolationError ( ) :
for k ∈ Sn−1, i ∈ I :

/ / estimate f̂ n−1
i;k ≈ f n−1

i;k by interpola t ing from the
/ / set {f n−1

i;j |j ∈ Sn−1and j ≠ k}
f̂ n−1
i;k = interpolate (Sn−1 , k , i )
/ / in terpola t ion errors from previous time step
∆f n−1

i;k = f̂ n−1
i;k − f n−1

i;k
return ∆f n−1

def holdoutSampling (∆f n−1 ,B ,Sn ) :
i f |∆f n−1

i;k /f 0i;k| > ϵi;h for any i ∈ I , k ∈ B ∩ Sn−1 :
add character is t icPoints (B ) to set Sn

/ / recurs ive ly i t e r a t e on subdivisions of set B
for B ′

∈ subBlocks (B ) :
holdoutSampling (∆f n−1 ,B ′ ,Sn )

def predictiveSampling ( ) :
Sn = emptySet
/ / add points k to Sn i f wn

k i s rapidly varying
gradientSampling (Sn )
i f t > 0 :

∆f n−1 = estimatedInterpolationError ( )
/ / add points k to Sn i f ∆f n−1

k i s large
holdoutSampling (∆f n−1 ,K ,Sn )

return Sn

to accurately and efficiently estimate the fluxes f ni,k for all i ∈ I and
k ∈ K . With spatial adaptive sampling, we interpolate the full flux
fields fromsamples f ni,k′ evaluated at a small set of sample points k′

∈

Sn
⊂ K . By construction, Sn is independent of the field index i.
The predictiveSampling procedure applies two heuristics to

build the sample points Sn. The first heuristic is implemented in
the gradientSampling procedure, which adds positions k to the set
Sn ifwn

i;k is rapidly varying for any field index i. Specifically, we use
the condition ∆x|∇wn

i;k/w
0
i;k| > ϵi;g to test whether the variation

of wn
i;k between neighbor grid points, relative to an initial refer-

ence value w0
i;k, exceeds the dimensionless threshold parameter,

ϵi;g . This criterion helps to identify ‘‘interesting points’’ in the first
time step, n = 0. However, specification of the thresholds ϵi;g sup-
poses prior knowledge of the possible complex functional depen-
dence f(w). And in any case,whatwe actually seek is a set of sample
points Sn from which we can accurately interpolate f(w), regard-
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less of the variation inw. Thus, when n > 1we choose large or infi-
nite ϵi;g to de-emphasize the importance of the gradient heuristic.

The holdoutSampling procedure implements a second, more
robust heuristic. Knowing that the conserved fieldsw change grad-
ually between time steps, we can use the fluxes sampled at Sn−1

from the previous time step to predict important sample points
Sn for the current time step. The procedure estimatedInterpola-
tionError determines, for each k ∈ Sn−1, how much error ∆f n−1

i;k

would arise if f n−1
i;k were interpolated from the sample points Sn−1

excluding k. That is, the error estimate ∆f n−1
i;k measures how im-

portant the sample point kwas for interpolating the flux fields f n−1
i;k

at the previous time step. We also use ∆f n−1
i;k as an estimate of the

importance of k for the current time step. If |∆f n−1
i;k /f 0i;k| exceeds a

dimensionless accuracy parameter ϵi;h, we ensure that the point
k is sampled in the next time step by including it in Sn. We go
further, and also add some neighbors of k to Sn. The implemen-
tation is recursive on spatial blocks B, beginning with the full spa-
tial domain B = K . Whenever B contains a point k for which
|∆f n−1

i;k /f 0i;k| > ϵi;h, we add characteristicPoints of B to the set Sn,
and also recurse on subBlocks ofB. In our one-dimensional imple-
mentation the blocksB are line segments, the single characteristic
point is the midpoint of the line segment, and sub-blocks of a line
segment are its two halves. In this manner, mesh points are recur-
sively added from K to Sn in the vicinity of sample points from
Sn−1 that could not be accurately estimated by interpolation. Our
strategy generalizes to higher dimensions in a natural way.

In the next section, we present experiments that demonstrate
the efficacy of our predictiveSampling algorithm for the one-
dimensional shock problem. In particular, we find that spatial
adaptive sampling provides high accuracy with a significantly
reduced number of sample points compared to standardHMM.Our
tests indicate that holdoutSampling alone is sufficient to select
sample points Sn. Thus, only target accuracies ϵi;h are required.
However, finite gradient thresholds ϵi;g may still be useful to
increase efficiency by reducing interpolation requirements.

The algorithm in Listing 1 simplifies somewhat for our one-
dimensional shock problem. Specifically,we sample only the single
stress component, f → σ11, from which the remaining fluxes can
be determined. Our algorithm then has only two dimensionless
parameters: ϵh, the target accuracy in interpolated stress, and ϵg ,
the gradient threshold for the A11 component of the deformation
gradient tensor.

5. Numerical experiments on shock propagation

We establish the consistency of our HMM approach by com-
paring to a fully atomistic (‘‘direct-MD’’) reference simulation. In
both cases, we simulate one-dimensional shock propagation in a
defect-free fcc crystal of copper using an embedded atom method
(EAM) interatomic potential [53]. To generate our initial condi-
tions, we beginwith an unstrained system thermalized to the tem-
perature 129 K. This equilibrium configuration has energy density
e = −0.296 eV/Å3, fcc lattice constant a = 3.618 Å, and zero
stress. Next, to generate a shock-wave, we instantaneously apply
a 10% tensile strain (A11 = 0.1) to a subregion of the simulation
domain, at fixed kinetic energy. In the strained region, wemeasure
a tensile stress of σ11 = 15 GPa.

The details of our direct-MD reference simulation are as follows.
The periodic simulation domain consists of 1440 × 12 × 12 fcc
unit cells, yielding an approximate linear system size L = 0.52µm
along the x-axis. We integrate for a time τ = 19.5 ps using
velocity-Verlet time steps of size ∆t = 2.5 fs. To construct the
macroscale stress field, we locally average the virial stress in space
Fig. 2. One-dimensional shockpropagation in a defect-free copper crystal. The light
blue curve represents a fully atomistic direct-MD simulation of size L = 0.52 µm
for time 19.5 ps. The black curve represents an equivalent HMM simulation with
N = 400 grid points using ϵg = 10−2 and ϵh = 10−3 . The red marks are adaptive
sample points from which the full stress field is spatially interpolated. The HMM
solution is invariant under a rescaling of space and time, and thus also represents
simulations on much larger physical scales. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

and time. We then transform this stress field from Eulerian to La-
grangian coordinates, to enable comparison with the HMM simu-
lation. The stress field at times 0 ps, 6.5 ps, 13 ps and 19.5 ps is
shown in Fig. 2.

In our corresponding HMM simulations, the macroscale La-
grangian fields (deformation gradient, velocity, and energy) evolve
according to the dynamics of Eqs. (11)–(13). These conservation
laws, of the general form in Eq. (24), are manifestly scale invari-
ant: if w(x, t) is a solution, then so is w(λx, λt), for any λ > 0.
Thus, our HMM simulation can be interpreted on any length scale
L, including the direct-MD one. We discretize the conserved fields
onto a regular lattice of N grid points, and integrate them using
the Nessyahu–Tadmor scheme. By increasing N at fixed L, we de-
crease∆x = L/N and improve accuracy.We select integration step
size ∆t = ∆x/c with c = 6666 m/s. At each HMM time step,
we use the spatial adaptive sampling algorithm of Listing 1 to se-
lectively spawn fine-scale MD computations, reconstruct the full
stress field, and close the HMM macroscale equations. Each fine-
scale MD simulation contains 12 × 12 × 12 fcc unit cells, has pe-
riodic boundary conditions consistent with the local macroscopic
strain, and has energy density fixed to the local macroscopic value.
Otherwise, the fine-scale MD details are the same as in the direct-
MD simulation. The output of each fine-scale simulation is the es-
timated virial stress, which we time-average over the second half
of our 1.25 ps MD simulation.
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Fig. 3. Reduction in fine-scale simulations enabled by spatial adaptive sampling.
For this simulation with N = 400 grid points, approximately 70% of the fine-scale
MD simulations are replaced by interpolation. That is,we reconstruct the stress field
at all 400 grid points using only 0.3 × 400 fine-scale simulations. Much greater
savings is possible with larger N . The majority of sample points are selected by the
holdoutSampling procedure to achieve target accuracy ϵh = 10−3 .

Fig. 2 demonstrates the consistency of HMM and direct-MD
simulations. Here we use a lattice with N = 400 macroscale grid
points. For our spatial adaptive sampling scheme, we select gra-
dient threshold ϵg = 10−2 and target accuracy ϵh = 10−3. To
compare to the direct-MD simulation at 19.5 ps, we integrate for
N/4 = 100 HMM time steps, corresponding to a physical time of
∆tN/4 = L/4c , which is consistent when the HMM simulation is
interpreted on the direct-MD length scale, L = 0.52 µm.

HMM simulation is significantly accelerated by spatial adaptive
sampling, which reduces the need for costly fine-scale MD simu-
lations. Fig. 3 demonstrates that, for our simulation with N = 400
grid points, only about 30% of the N grid points require MD simu-
lation. The other 70% are replaced with spatial adaptive sampling
based interpolation. Below, we show that larger N leads to more
dramatic efficiency gains. In all cases, we integrate forN HMMtime
steps, corresponding to physical time duration T = L/c. The per-
formance of spatial adaptive sampling is roughly independent of
integration time. After about 3N/4 integration steps, the two trav-
eling waves pass through the periodic boundaries and collide with
each other. At the time of this collision, the number of required
fine-scale simulations actually decreases.

To determine the important sample points, our algorithm con-
tains two heuristics: gradientSampling and holdoutSampling.
Fig. 4 demonstrates that the latter is sufficient. Here we use
N = 100 grid points, fix the holdoutSampling target accuracy to
ϵh = 10−3, and measure how the gradient threshold parameter ϵg
affects the number of sample points. For large ϵg , the number of
fine-scale calls spawned by gradientSampling drops to zero. We
also observe saturation in the average and maximum errors in
stress with increasing ϵg . These errors are defined as

ξavg =
1

LTσ0

 L

0

 T

0

σ11 − σ
(exact)
11

 dtdx (28)

ξmax =
1
σ0

max
x,t

σ11 − σ
(exact)
11

 , (29)

where

σ0 = max
x,t

|σ
(exact)
11 |, (30)

and σ
(exact)
11 (x, t) is the result of brute-force HMM simulationwith-

out the use of adaptive sampling, for which N fine-scale calls are
required to construct the full stress field. This observed saturation
a

b

Fig. 4. The gradient threshold ϵg does not strongly affect the number of fine-scale
sample points or the simulation error. We use N = 100 grid points and target
accuracy ϵh = 10−3 . (a) In the limit of large ϵg , the number of fine-scale samples is
controlled solely by ϵh , and (b) the average relative simulation error ξavg saturates
to a value comparable to ϵh .

Fig. 5. The relative simulation error, measured with ξavg and ξmax , is strongly
controlled by the target accuracy ϵh . We use N = 100 and ϵg = 10−2 . The choice of
ϵg does not play a strong role (cf. Fig. 4).

in ξavg confirms that, apart from the first HMM time step, we may
take the limit ϵg → ∞ to effectively disable gradientSampling
with little penalty.

Conversely, Fig. 5 demonstrates that the holdoutSampling tar-
get accuracy ϵh strongly controls the measured simulation errors
ξavg and ξmax. Here we fix ϵg = 10−2 and vary ϵh, again with
N = 100 grid points and N HMM time steps. For small ϵh, we ob-
serve that ϵh ≈ ξavg. The maximum error ξmax also scales linearly
with ϵh, but with a larger prefactor.

Fig. 6 illustrates that spatial adaptive sampling becomes
extremely effectivewhen the number of grid pointsN is very large.
As before, we use ϵg = 10−2 and ϵh = 10−3. To extrapolate our
measurements to very large N , we also perform HMM simulations
with a stochastic linear stress–strain response in place of MD
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Fig. 6. Speed-up of spatial adaptive sampling compared to brute force HMM,
measured by the reduction in fine-scale calls. We use ϵg = 10−2 and ϵh = 10−3 .
In our simulations of very large N , we replace fine-scale MD simulation with a
stochastic, linear stress–strain response. Tremendous efficiency gains are possible
when N grows large, for which the speed-up scales as N/(50 × N0.14).

simulation,

σ̃11(A11) = A11 × 165.8 GPa + η × 160.0 kPa. (31)

Here, η represents a Gaussian random variablewith zeromean and
unit variance. We observe spatial adaptive sampling to perform
similarly with both MD and surrogate fine-scale models. In both
cases, approximately 50 × N0.14 fine-scale sample points are
needed to interpolate the stress response at all N grid points,
yielding a speed-up factor of N/(50 × N0.14). Because fine-scale
simulation is typically the overwhelming computational cost in
HMM, spatial adaptive sampling offers tremendous efficiency
gains when N is large.

6. Conclusion

We have presented a general technique that substantially
accelerates many kinds of multiscale simulations, including HMM
and equation-free methods. In these multiscale schemes, the
macroscale equations must be completed with constitutive data
provided by fine-scale scale simulation. This fine-scale simulation
is the overwhelming computational cost. One way to reduce fine-
scale simulation is standard adaptive sampling, in which all fine-
scale simulations are stored in a database. Future constitutive
data can be extracted from this database by interpolating in the
high-dimensional space of fine-scale inputs. While attractive in
principal, this standard approach to adaptive sampling approach
suffers from the difficulty of high dimensional interpolation, and
the bottleneck of synchronizing a central database.

In our work, we introduce a spatial approach to adaptive
sampling. Our method does not use a database. Instead, at each
macroscale time stepwe reconstruct the required constitutive data
by interpolating fine-scale simulations on the d ≤ 3-dimensional
simulation domain.We also predict the important sample points at
the beginning of eachmacroscale time step, to achieve near perfect
parallelism,whichwe expect to be amajor advantage for execution
on next-generation supercomputers.

To demonstrate the efficiency of our approach, we used a one-
dimensional model of elastodynamic shock propagation based on
HMM. For this problem, our spatial adaptive sampling algorithm
requires approximately 50×N0.14 sample points to interpolate the
stress response at allN grid points, with target accuracy ϵh = 10−3.
At the highest continuum resolution we tested, N = 3.2 × 105,
spatial adaptive sampling reduces fine-scale simulation (and thus
the total cost of HMM) by three orders of magnitude. The shock
problem we selected is particularly suitable to spatial adaptive
sampling, but othermultiscale simulations should also benefit. Our
algorithm requires only a target accuracy parameter ϵh, and readily
generalizes to more complicated models.

The code we developed for this paper is available from
https://github.com/exmatex/CoHMM.
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