
Molecular Dynamics in the Multicanonical Ensemble: Equivalence of
Wang−Landau Sampling, Statistical Temperature Molecular
Dynamics, and Metadynamics
Christoph Junghans, Danny Perez, and Thomas Vogel*

Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

*S Supporting Information

ABSTRACT: We show a direct formal relationship between the Wang−
Landau iteration [PRL 86, 2050 (2001)], metadynamics [PNAS 99, 12562
(2002)], and statistical temperature molecular dynamics (STMD) [PRL
97, 050601 (2006)] that are the major work-horses for sampling from
generalized ensembles. We demonstrate that STMD, itself derived from
the Wang−Landau method, can be made indistinguishable from
metadynamics. We also show that Gaussian kernels significantly improve
the performance of STMD, highlighting the practical benefits of this
improved formal understanding.

■ INTRODUCTION
Generalized ensemble methods have become the standard
techniques to explore the energy landscape of complex
systems.1 From such samplings, the free energy can be
obtained, which provides various thermodynamic insights.
The idea of performing Monte Carlo (MC) simulations in
noncanonical or extended ensembles goes back a long time.
Early milestones include works by Torrie and Valleau,2 who
introduced the so-called Umbrella Sampling, Challa and
Hetherington,3,4 who proposed a Gaussian ensemble to
interpolate between microcanonical and canonical views of
phase transitions in finite systems, and Lyubartsev et al.,5 who
simulated an expanded ensemble covering a wide temperature
range. Monte Carlo (MC) simulations in the multicanonial
(muca) ensemble, first proposed by Berg and Neuhaus,6,7

exploit the umbrella sampling idea by generating an umbrella in
a way that a random walk in energy space is obtained. Later,
Hansmann et al.8 extended multicanonial MC to molecular
dynamics (MD). Of course, the main technical challenge is the
determination of good umbrellas (multicanonial weights) in
order to achieve a diffusive behavior in energy space. In a
related effort, Wang and Landau (WL) proposed a random-
walk algorithm9,10 for MC applications, in which the density of
states, suitable to calculate multicanonical weights, is estimated
on the fly; in fact, over the past decade, the WL method has
become the most popular tool for this purpose in the MC
community.11 Shortly after, Laio and Parrinello12 proposed an
MD-based methodmetadynamicsto fill up basins of the
free-energy surface and enhance the exploration of config-
uration space. Using a different approach, and independently
from metadynamics, Kim et al.13,14 later combined ideas from
Hansmann’s multicanonial MD with the WL MC algorithm and
put forward a method known as statistical temperature
molecular dynamics (STMD). Other combinations of WL
and MD using the weighted histogram method15 and/or

smoothing of the estimated density of states16 have been
proposed as well.
In this paper, we investigate the relationship between WL,

STMD, and metadynamics. While these methods are well
established in their communities, their precise formal relation-
ships have, to the best of our knowledge, not been thoroughly
analyzed, and consequently, their development largely proceeds
in parallel. We provide a unified formal view of these three
methods and give the conditions under which they are
equivalent. In particular, we show that STMD and metady-
namics produce, on a time step per time step basis, identical
dynamics when using consistent initialization and update
schemes. This unified view allows for the transfer of innovation
between the different methods and avoids duplication of efforts
in different communities.

■ MOLECULAR DYNAMICS IN THE
MULTICANONICAL ENSEMBLE

In the muca ensemble, one aims at sampling from a f lat
potential energy distribution Pmuca(U), i.e., one requires

∝ =P U g U w U( ) ( ) ( ) const.muca muca (1)

where g(U) is the density of states, and wmuca(U) are the
multicanonical weights, independent of T. Obviously, for this to
be realized, the weights have to take the form of

∝ = =− − −
w U g U( ) 1/ ( ) e eg U k S U

muca
ln ( ) ( )B

1

(2)

where S(U) = kB ln g(U) is the microcanonical entropy, and kB
is the Boltzmann constant. In the traditional formulation where
only configurational degrees of freedom are taken into account,
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the muca weights can be seen as canonical weights at a
temperature T0 for an effective potential

=V U T S U( ) ( )eff 0 (3)

The interatomic forces for muca MD simulations are
obtained from the gradient of Veff(U)
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Using the definition of the microcanonical temperature

= ∂ ∂−T U S U U( ) ( )/1
(5)

the multicanonical forces become

=f
T

T U
f

( )i i
muca 0

(6)

i.e., muca forces differ from the conventional forces, f i , only by
an energy-dependent rescaling factor ∝1/T(U).
Because the multicanonical weights are related to the density

of states (eq 1), results of a single multicanonical simulation
can be reweighted to obtain canonical averages at any
temperature. The key difficulty in flat-histogram simulations,
on the other hand, is to determine the simulation weights (i.e.,
the density of states), and many different approaches have been
proposed to address that issue, with WL being one of the most
popular. In WL,9,10 the density of states g(U) is approximated
using a discrete histogram. At each step, the value of the bin of
the instantaneous estimator g′(U,t) containing the current
energy is updated using a modification factor fWL via

′ + Δ = ′ +g U t t g U t fln ( , ) ln ( , ) lnact act WL (7)

where “act” is the actual bin index, and t is the MC (or later,
MD) simulation time. [Primed quantities y′(x,t) will generally
refer to instantaneous estimators of y(x) in the following.]
Conventionally, ln fWL is initially set to 1 and ln g′(U,t = 0) = 0.
Simultaneously, a histogram H(U) of the energy bins visited
during the simulation is accumulated. Once H(U) is deemed
flat enough, fWL is decreased, e.g., as fWL → ( fWL)

1/2. In this
paper, we are mainly concerned with the first iteration, where
the dynamics are still strongly biased, but it can be shown that,
as fWL tends to 1, the WL method converges to a correct
multicanonical sampling.9,10,17

Direct applications of the WL strategy to MD have been
attempted;18 however, such efforts were hampered by
numerical stability issues introduced by the finite-difference
differentiation of noisy histograms, requiring the introduction
of rather elaborate smoothing procedures.16 To avoid such
complications, Kim et al.13,14 proposed to directly estimate
T(U) (eqs 5 and 6) and update T′(U,t), which they refer to as
statistical temperature, as the MD simulation proceeds and to
begin from an initially constant temperature T′(U,t = 0) =
T0 > 0 instead of a constant entropy as done in WL. This
approach allows for a restriction of the sampled temperature
range, for example, to positive values. Except for that key
difference, the STMD scheme is a direct translation of the WL
ideas, making muca MD simulations according to eq 6 feasible.
Applying a central difference approximation to the derivative in
eq 5, the WL update (eq 7) then translates into the following

temperature update (T′(U,t) is also a binned discrete function)
in the energy bins next to the currently occupied one

δ
′ + Δ =

′
∓ ′β

±
±

±
T U t t

T U t
T U t

( , )
( , )

1 ( , )act 1
act 1

act 1 (8)

with δβ = kB ln fWL/2ΔU and ΔU being the energy bin width.
See refs 13 and 14 for all details.
Various extensions of this single-bin based update scheme are

possible. For example, one can choose any scalable kernel
function γ k(x/δ̂) to evolve the entropy estimator S′(U,t) ∝
ln g′(U,t). The update (which can now affect an arbitrarily large
energy range) then reads:

γ δ′ + Δ = ′ + − ̂g U,t t g U,t k U Uln ( ) ln ( ) [( )/ ]act (9)

This scheme has proven particularly useful for Wang−Landau
sampling of joint densities of states, i.e., when performing
random walks in more than one dimension.19 The above
expression can be cast in terms of an entropy estimator as

∑γ δ′ = − * ̂ + ′ =
*≤

S U,t k U U t S U,t( ) [( ( ))/ ] ( 0)
t t (10)

where we use the times t* to index the entropy-update events.
Following STMD, assume the initial guess S′(U,t = 0) is such
that

′ =
= ∂ ′ =

∂
=
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Recalling eq 4, we then get for the muca forces
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Taking a step back, we can use this last equation to factorize
Veff(U) (eq 3) into a sum of the original potential U and a bias
potential VG: Veff(U) = U + VG. By inspection (eqs 4 and 12),
we directly get

∑γ δ′ = − * ̂
*≤

V U,t T k U U t( ) [( ( ))/ ]
t t

G 0
(13)

i.e., with the proper initial conditions, WL/STMD updates are
equivalent to the construction of an additive bias potential that
takes the form of a simple sum of kernel functions. As we will
now show, this procedure is functionally equivalent to a
metadynamics12 approach with the potential energy as a
collective variable. In metadynamics, one also aims at
overcoming free energy barriers, allowing for a random walk
in the collective-variable space.20 In order for the system to
freely diffuse with respect to the potential energy, the average
“metadynamics force” ϕF on the collective variable must vanish,
i.e., the f ree energy landscape FT0

(U) = U −T0S(U) must
become flat. To that effect, an additive potential VG(U) is
introduced such that

ϕ =
∂ +

∂
=U

F U V U

U
( )

[ ( ) ( )]
0

T
F

G0

(14)
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Clearly, VG(U) = −F(U) solves eq 14, which implies U +
VG(U) = T0S(U), up to an arbitrary additive constant.
Therefore, an energy-based metadynamics simulation simply
reduces to a multicanonical MD simulation in U (eq 3). In
practice, metadynamics starts with the initial guess VG′ (U,t = 0)
= 0 for the modifying potential (i.e., also starting the simulation
in the canonical ensemble at temperature T0), which is then
gradually updated following a scheme introduced earlier in the
energy landscape paving method.25 Typically, Gaussian kernel
functions k(x/δ ̂) ∝ exp[(−1/2)(x/δ ̂)2] are used, and VG′ (U,t)
reads

∑
δ

′ = − − ′
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⎡
⎣⎢
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⎦⎥V U,t w

U U t
U

( ) exp
( ( ))

2t t
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where w is a tunable constant. The modified interatomic forces
are obtained from the gradient of the modified potential
U(q1,...,q3n) + VG[U(q1,...,q3n),t]:
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which is indeed identical to eq 12 when γ k(x/δ ̂) is a Gaussian
kernel function with w = γ T0 and when using the same time
sampling points t′ and t*, respectively.

■ RESULTS AND DISCUSSION
During the past decade, there have been multiple independent
algorithmic advances in the MC and MD communities that led
to significant improvements in the major generalized ensemble
methods (see refs 27 and 28 for some examples), and the
introduction of STMD13,14 was a major step in bridging the gap
between MC and MD. Our demonstration that STMD and
metadynamics can be made identical should further facilitate
technological transfers between both communities.
The use of Gaussian kernels, as done in metadynamics, in

STMD is the most obvious example of such a transfer. For
illustrative purposes (see the Supporting Information for
another example), potential gains are demonstrated using a
system consisting of 500 silver atoms at constant particle
density ρ = 0.0585 Å−3, interacting via an embedded-atom
potential.29 We use the stochastic Velocity−Verlet algorithm30

with a time step of 2 fs and a Langevin thermostat at T0 =
3500 K and apply periodic boundary conditions. We use the
original STMD method, where the statistical temperature is
updated according to a single-bin update of the entropy (via eq
8), and compare with the Gaussian kernel version where we
directly solve eq 5. Applying eq 9, this leads to the following
temperature update

γ
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We apply Gaussian kernels of different widths, which we
measure in units of the energy bin width ΔU used in the
original STMD run. That is, for (δ ̂ = nΔU/(2)1/2), the kernel

function drops to γ/e at the centers of the nth nearest neighbor
energy bins. γ takes the role of ln fWL (eq 7) and can be chosen
much smaller than for WL simulations;13,14 we initially set γ =
3.5 × 10−3. We furthermore use a cutoff of 10ΔU on both sides
of the Gaussian in all cases but verified that the actual choice of
the cutoff does not systematically affect the results (see the
Supporting Information for a more detailed discussion and
data). The energy-histogram bin width is identical in all cases,
and the energy histogram itself is always updated by increasing
single bins, i.e., the Gaussian kernels are not applied for
recording the histogram of visited energies. Also, the flatness
criterion is identical for all runs. In Table 1, we show the

average times needed for different runs to fulfill the histogram
flatness criterion, i.e., to finish the first WL iteration and in
particular to visit all energy levels. The result clearly shows that
the width of the Gaussian kernel influences how fast the system
is driven through energy space and that wider kernels provide a
significant speed up. In Figure 1a, we show time series for the
first iteration from two runs, applying the original STMD and a
Gaussian kernel run with width (3ΔU/(2)1/2), respectively. For
the latter case, the system moves from the initial (I) amorphous
configuration via low-energy crystalline states exhibiting
stacking faults (SF) to the perfectly ordered ground state
(GS; see Figure 1b for visualizations) in just about 20 ns.
Concomitantly, extensive thermodynamic information is
gathered. Also note that the use of continuous kernel functions,
rather than binned estimators, allows in principle for an
arbitrarily fine-meshed estimation of T(U) without systemati-
cally influencing the algorithmic runtime.
Many other improvements can be considered, and parallel

efforts in the different communities are a common occurrence.
For example, it has been shown that the WL energy probability
distribution is attracted to the vicinity of the uniform
distribution, i.e., that the algorithm converges to the right
solution.17 By introducing a height-reduction scheme for the
Gaussian kernels,31 similar statements should be available for
MD methods. A more recent development in the metady-
namics community concerns adaptive Gaussians,32 where the
form of the update to the bias potential depends on local
properties of the underlying free-energy surface. Similar ideas of
applying different entropy updates in Wang−Landau simu-
lations have circulated,33 and an ad-hoc method for nonuniform
binning of energy levels has been recently and independently
implemented.34 To mention a final example, in efforts to
develop massively parallel implementations, multiple parallel
walkers have been simultaneously deployed to update a bias
potential in metadynamics.35 However, systematic errors,
unnoticed in ref 35, were detected when exactly the same
approach was independently applied in the MC community.33

Joining insights from both studies might lead to further
improvements. In fact, a generic parallel scheme based on

Table 1. Average Times to Complete First Iteration, i.e.,
Create a Flat Histogram in a Given Energy Rangea

method time (ns)

original STMD (ΔU = 2 eV) 81.3 ± 27.6
Gaussian kernel (δ ̂ = ΔU/(2)1/2) 88.7 ± 36.6
Gaussian kernel (δ ̂ = 2ΔU/(2)1/2) 38.8 ± 18.7
Gaussian kernel (δ ̂ = 3ΔU/(2)1/2) 25.9 ± 23.3

aStatistical errors were estimated through multiple independent runs.
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replica exchanges, which avoids such artificial bias, was recently
introduced and applied in both communities.36−39

■ SUMMARY

We aim at consolidating the developments in the different areas
of generalized ensemble MC and MD sampling by demonstrat-
ing that three popular methods, namely, Wang−Landau,
statistical temperature molecular dynamics, and metadynamics,
are formally equivalent upon a consistent choice of initial
conditions and update rules. Specifically, we have shown that
STMD, a translation of the Wang−Landau method into the
MD language, augmented by the introduction of kernel updates
of the statistical temperature becomes completely identical to
metadynamics, i.e., both methods give identical dynamics on a
time step by time step basis. The focus of this paper is on this
explicit equivalence; discussions concerning the overall
convergence behavior and analogies between different strategies
in Wang−Landau sampling and metadynamics can be found in
the literature (see refs 17, 21, 40, and 41). We believe that a
consistent view of flat-histogram methods as presented here is
beneficial to foster transfer of ideas between the respective
communities.
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