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Multiscale and inhomogeneous molecular systems are challenging topics in the field of molecular simulation. In
particular, modeling biological systems in the context of multiscale simulations and exploring material properties
are driving a permanent development of new simulation methods and optimization algorithms. In computational
terms, those methods require parallelization schemes that make a productive use of computational resources for
each simulation and from its genesis. Here, we introduce the heterogeneous domain decomposition approach,
which is a combination of an heterogeneity-sensitive spatial domain decomposition with an a priori rearrangement
of subdomain walls. Within this approach, the theoretical modeling and scaling laws for the force computation
time are proposed and studied as a function of the number of particles and the spatial resolution ratio. We also
show the new approach capabilities, by comparing it to both static domain decomposition algorithms and dynamic
load-balancing schemes. Specifically, two representative molecular systems have been simulated and compared
to the heterogeneous domain decomposition proposed in this work. These two systems comprise an adaptive
resolution simulation of a biomolecule solvated in water and a phase-separated binary Lennard-Jones fluid.
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I. INTRODUCTION

Molecular simulation has proven to be of vital importance
for driving the theory and the interpretation of experiments in
diverse research fields, including soft matter research [1–7]. In
particular, molecular dynamics (MD) methods have facilitated
the study of systems consisting of millions of particles [8]
and time scales up to milliseconds [9]. These milestones in
MD simulations have been achieved by promoting two facts:
the intrinsic highly parallel environment enabled by the MD
algorithm and the development of new optimized algorithms
for several MD systems [10–14]. Out of equilibrium (in-
homogeneous) and multiscale simulations constitute recent
milestones in molecular simulations of soft matter, which have
driven in the past few years the development of new methods
aiming to provide a physically consistent treatment, highly
accurate and computationally efficient molecular modeling. In
particular, concurrent multiscale modeling, mapping atomic
configurations to coarse-grained models and partitioning the
system in different resolution regions [15–18]. As well as
several enhancements developed for studying inhomogeneous
systems; like phase separated ones [19], crystal growth [20],
biomembranes [21,22], and proteins [9,12].

Understanding soft matter at multiple time and length scales
poses particular computational demands where microscopic
physical phenomena strongly couple to macroscopic represen-
tations, e.g., by adjusting resolutions on the fly between models
of multiple costs. Consequently, suited parallelization schemes
should keep these considerations in mind and meet both
requirements: scalability and simulation speed. Furthermore,
available load-balancing algorithms are based on measure-
ments of computational runtime, although they are limited for
predicting the domain decomposition of an inhomogeneous
simulation from its initial configuration. A similar situation
arises when tackling out-of-equilibrium molecular systems
with prescribed levels of heterogeneity, which are commonly
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given as characteristics and topology of the different particles
within the simulation setup.

In this article, we introduce the heterogeneous spatial do-
main decomposition algorithm (HeSpaDDA). This algorithm
is not based in any runtime measurements, it is rather a
predictive computational resources allocation scheme. The
HeSpaDDA algorithm is a combination of an heterogeneity
(resolution or spatial density) sensitive processor allocation
with an initial rearrangement of subdomain walls. The initial
rearrangement of subdomain walls within HeSpaDDA antic-
ipates favorable cells distribution along the processors per
simulation box axis by moving cell boundaries according to
the resolution of the tackled region in the molecular system.
In a nutshell, the proposed algorithm will make use of a priori
knowledge of the system setup. Specifically, the region that is
computationally less expensive. This inherent load-imbalance
could come from different resolutions or different densities.
The algorithm will then propose non-uniform domain layout,
i.e., domains of different size and its distribution amongst
compute instances. This could lead to significant speedups
for systems of the aforementioned type over standard algo-
rithms,e.g., spatial domain decomposition (DD) [23] or spatial
and force based DD [24].

The multiscale simulation method we have chosen to
validate the capabilities of HeSpaDDA is the adaptive res-
olution scheme (AdResS). In particular, for a dual res-
olution simulation like AdResS we tackle an expensive
model in the high-resolution region and a less-expensive
model elsewhere. In computational terms, this means that
some processors have more work to do than others at the
initial domain decomposition of a dual resolution simulation.
AdResS methods have been employed for the concurrent
simulation of diverse length scale systems interfacing different
resolutions of simulation techniques, ranging from concurrent
simulations of classical atomistic and coarse-grained models
[25–32], to coupling classical atomistic and path-integral mod-
els [33–35], as well as interfacing particle-based simulations
with continuum mechanics [16,17].
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FIG. 1. AdResS simulation of an atomistic protein and its atom-
istic hydration shell, coupled to a coarse-grained particle reservoir
via a transition region [30].

The bimolecular AdResS simulation (see Fig. 1) tackled
with HeSpaDDA, is a cubic simulation system with a spher-
ical high-resolution region, comprised by an aqueous solu-
tion of the regulatory protein ubiquitin [30]. Understanding
biomolecular function is fundamental to a broad variety of
research domains, including drug discovery, food processing,
and bioprocess engineering, to name but a few. In recent
years, the AdResS approach has been successfully applied
to an increasing number of biomolecular systems [30,32,36],
with the goal of obtaining both computational speedup and
additional insight in the systems properties.

In the case of inhomogeneous single-scaled systems we
have tackled the system described in Fig. 2, which contains two
phase-separated fluids of Lennard-Jones particles presenting a
6 to 1 σ ratio of heterogeneity.

The capabilities of the HeSpaDDA algorithm have been
benchmarked by using two MD simulation packages. The
AdResS simulations have been carried out by employing the
ESPResSo++ MD package (static domain decomposition).
While for the single-scale phase separated 6 to 1 Lennard-

FIG. 2. Lennard-Jones system of a binary fluid separated by two
phases of equal volume but different σ (6 to 1).

Jones binary fluid has been simulated with the GROMACS
MD package and makes use of its embedded dynamic load-
balancing features. However, the HeSpaDDA algorithm can
be implemented within any other MD packages supporting
multiscale and / or inhomogeneous simulations.

II. ADAPTIVE RESOLUTION SCHEME

In the adaptive resolution simulation scheme (AdResS), a
region in space is defined in which molecules are modeled
using atomistic detail, while coarse-grained models are used
elsewhere (see Fig. 1). Particles can freely diffuse between
atomistic and coarse-grained regions, smoothly changing their
resolution as they cross a hybrid or transition region (see
Fig. 3).

Here, we review the theoretical basis behind the adaptive
resolution methodology. A typically small part of the system,
the atomistic (AT) region, is described on the atomistic level
and coupled via a hybrid (HY) transition region, to the coarse-
grained (CG) region, where a coarser, computationally more
efficient model is used. The interpolation is achieved via a
resolution function λ(Rα), a smooth function of the center
of mass position Rα of molecule α. For each molecule, its
instantaneous resolution value λα = λ(Rα) is calculated based
on the distance of the molecule from the center of the AT
region. It is 1 if the molecule resides within the AT region and
smoothly changes via the HY region to 0 in the CG region (see
Fig. 3).

The interpolation between atomistic and coarse-grained
nonbonded forcefields can be performed at the level of
energies (Hamiltonian-AdResS) or of forces (Force-AdResS);
as explained in the following section, for this publication we
employ the Force-AdResS method.

Note that, in addition to the nonbonded interactions,
bonded potentials are also usually present. In typical AdResS
applications they are not subject to interpolation. As these are
computationally significantly easier to evaluate, they do not
play a role in the parallelization scheme presented here.

FIG. 3. Schematic of the resolution function λ(Rα) used for the
interpolation between the AT and CG forcefields in the adaptive
resolution methodology. In the presented case, an atomistic water
model is coupled with a coarse-grained one-particle-per-molecule
description in the CG region.
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Force interpolation

In the force interpolation scheme, the original AdResS
technique [15,25], two different nonbonded force fields are
coupled as

Fα|β = λ(Rα)λ(Rβ)FAT
α|β + [1 − λ(Rα)λ(Rβ)]FCG

α|β, (1)

where Fα|β is the total force between the molecules α and β and
FAT

α|β defines the atomistic force-field, which is decomposed
into atomistic forces between the individual atoms of the
molecules α and β. Finally, FCG

α|β is the coarse-grained force
between the molecules, typically evaluated between their
centers of mass.

III. HETEROGENEOUS SPATIAL DOMAIN
DECOMPOSITION ALGORITHM

Molecular simulations in soft-matter investigations, such
as polymer and biomolecular research, require the evalu-
ation of efficient parallelization schemes, e.g., algorithms
[10,12,14,23,24,37]. In particular, initial domain decompo-
sition algorithms can be based on the distribution of atoms,
forces, or the space in a given simulation domain, and also a
combination of both forces and space [24]. After a certain
amount of simulation time steps, dynamic load balancing
(DLB) schemes can be activated, like the work-sharing
[38–40] and work-stealing [41–43] ones. In general, dis-
tributed runtime systems with high performance computing
(HPC) focus are employed to achieve DLB, such as: Charm++
[44], HPX [45], Legion [46], among others. However, initial
domain decomposition algorithms are not aware of the inherent
region-based distribution of multiscale and/or inhomogeneous
systems from the simulation setup. The idea behind an initial
and predictive DD algorithm is to reach higher scalability and
efficiency by assuming a steady runtime behavior of the sim-
ulation platform and hence deliver the domain decomposition
within the simulation setup and without any initial overhead in
terms of load per processor. Naturally, the proposed algorithms
are complementary to the dynamic load-balancing ones that
will take care of the platform-dependent imbalance along
extensive production runs. Interestingly, the trigger for such
DLB algorithms could be extended by using HeSpaDDA, e.g.,
for the Lennard-Jones binary mixture described in this article,
DLB could be required only after 100 000 MD steps. Whereby
the common trigger used per default in DLB algorithms is in
the range from 1 to 100 MD steps.

Here, we introduce heterogeneous spatial domain decom-
position algorithm (HeSpaDDA), which is a combination
of an heterogeneity (resolution or density) sensitive spatial
domain decomposition (sDD) with an initial subdomain-walls
rearrangement. The fact that the simulation setup presents
a degree of heterogeneity along one of the simulation box
axes, like the AdResS (resolution heterogeneous) or Lennard-
Jones binary mixture ones (density heterogeneous), allows
us to identify the simulation box regions with high and
low resolutions and hence assign computational resources
according to the resolution and volume ratios between those
regions from the very beginning of the production run (see
Fig. 4).

FIG. 4. AdResS simulation of an atomistic protein, its atomistic
hydration shells and CG water particles. (a) The dashed lines
illustrate the spatial domain decomposition (sDD) of such simulation;
(b) shows the intermediate state where only the high-resolution
region (dash-dotted circle in yellow) has been spatially rescaled
to reach the same resolution as the low-resolution one, then in (c)
the processors are allocated according to the heterogeneous spatial
domain decomposition algorithm (HeSpaDDA) by distinguishing the
resolution region type. Note that in (c) no more spatially rescaling
is shown and the initial system configuration is reached. In all cases
the total grid is 6 × 6 processors; however, the processors allocation
in the high-resolution region (PHR = P x

HR ∗ P
y

HR) changes from (a)
to (c), namely, from 2 × 3 to 4 × 4 subdomains. Due to illustrative
reasons, only two dimensions are depicted.

HeSpaDDA can be divided into two main modules: the
first one is devoted to the allocation of processors along the
simulation box axes and the second one to the cells partitioning
of resolution-dependent volumes to processors subdomains.
Here each cell is defined as rcell � rc + rs , with rc and rs as
the cutoff and skin lengths, respectively [47]. A prevailing
reference value used in the modeling is rcell = rc + rs [6]. The
first module is of crucial importance because the processor
allocation defines the productive scaling of the system to be
simulated already at the initial configuration of the simulation
run. The development of HeSpaDDA is illustrated in Fig. 4,
where we observe how the subdomain-walls rearrangement
is performed. First, the processor allocation as for sDD are
shown [Fig. 4(a)], then the high-resolution region (inside the
dash-dotted circle in yellow) has been temporarily rescaled
only for processor allocation special purpose [Fig. 4(b)].
Once the processor allocation has been set, the processors are
adjusted to the regions according to the low- or high-resolution
type [Fig. 4(c)]. Moreover, HeSpaDDA includes two types of
system configurations, i.e., cubic and noncubic setups. From
here on, in this paper the setup with spherical high-resolution
region corresponds to a cubic case (Fig. 1) and the slablike to
the noncubic one (Fig. 2). While cubic configurations tend
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to present the same amount of processors per simulation
box axes, i.e., Px = Py = Pz to achieve efficient scaling, the
noncubic configuration requires an additional optimization
step to define the best triplet (Px,Py,Pz). In particular, for
the system described in Sec. IV B Px is independent from Py

and Pz (with Py = Pz). Note here that HeSpaDDA is able
to handle any box axes configuration required by the system
setup (flow chart shown in the Appendix A).

In the second module, the algorithm receives the number
of processors per region as an input and starts distributing
cells along box axes in each subdomain according to the
resolution type. Furthermore, this module controls the size and
cubicity of all cells (see Sec. III B). A successful cell’s cubicity
check guarantees that the communication between surfaces of
different neighbors-cells of the parallelepiped are or tend to
be equal in each box axes X, Y , and Z. Interestingly, this
holds for homogeneous and inhomogeneous systems where
HeSpaDDA is applied. The intrinsic discrepancies between
low- and high-resolution regions are considered in the method
by a differentiated distribution of cells according to the type
of resolution in each region. For more details on the algorithm
flow chart, see Appendix A.

The validation of the HeSpaDDA algorithm has been
performed with two archetypical heterogeneous systems, a
biomolecule solvated in water (Force-AdResS) and a phase-
separated 6-to-1 Lennard-Jones binary fluid. Both systems
represent simulation setups, where the combination of this
initial domain decomposition algorithm and dynamic load bal-
ancers is expected to increase productivity along an extensive
production run (as verified in Sec. V B). Likewise, for slowly
varying systems (within this article referred to simulations
demanding Verlet-list rebuilds with periodicity higher than 7
stepsMD) the HeSpaDDA algorithm can also be used to adapt
the cell-grid of concurrent multiscale simulations based on
performance indicators, such as the number of interactions or
particle density per processor.

A. Modeling and scaling laws for HeSpaDDA

To circumvent the inclusion of platform-dependent run
times we based the scaling law for the computation time
of HeSpaDDA on the approach proposed in Ref. [23] [see
Eq. (2)]. This approach considers the computation time t in the
context of a homogeneous and cubic system by considering
an MD integrator in accordance to the velocity Verlet and
linked-cell-list (LCL) algorithm. In Eq. (2), the first term
reflects pure force calculation time assuming that computed
interactions are short-range. Moreover, the second term tackles
the particle positions exchange between adjacent-processors in
three dimensions. The particle positions need to be updated in
every time step, and hence it is part of the computation time t ,
leading to

t ∝ NAT

2P
+ 6rcellkhw

(
NAT

P

)2/3

, (2)

where NAT is the total number of atomistic particles, P is the
total number of processors, rcell is the sum of the interaction
cutoff radius and skin length, and khw is a constant describing
the communication taking place in each force calculation with
strong dependence on the underlying hardware platform. From

here on, this constant will be defined as khw ≡ 1, emphasizing
the exclusion of platform-dependent run times.

Data communication modeling in high-performance com-
puting is a subject of constant development [48,49]. In
particular, for message-passing parallel programming models
where blocking, as well as nonblocking, communications
while synchronizing nearest-neighbor processes affect the
performance of the simulations [50].

Taking the first term of Eq. (2) as a starting point, we
consider two resolutions within the same simulation box and
hence the number of processors located in both resolutions,
as well. The number of particles in each resolution region
depends on the volume ratio of each resolution region and the
total volume V . Having for the low-resolution (LR) region,

NLR = VLR

V
N, (3)

where NLR is the number of particles in the low-resolution re-
gion and VLR

V
is the ratio of volumes between the low-resolution

region and the total simulation box. Note that N is the
total number of particles represented at the lowest resolution.
Mathematically, N is defined as N = NLR + NHR/Rres

SH with
spatial heterogeneity resolution ratio Rres

SH presented in Eq. (5).
Furthermore, the number of particles in the high-resolution
(HR) region are given by

NHR = Rres
SH

VHR

V
N, (4)

with

Rres
SH = N res

HR

N res
LR

, (5)

where N res
HR are the number of entities in the high-resolution

region that correspond to one entity in the low-resolution one
N res

LR. Mapping the atomistic water molecule to the coarse-
grained model (as depicted in Fig. 3) results in Rres

SH = 3. The
ratio of volumes between the high-resolution region and the
total simulation box is VHR

V
, comprised in Eq. (4).

From the viewpoint of the total number of processors, a
straightforward spatial domain decomposition approach would
decompose the system by taking into account the volume ratio
of the different resolutions and the total simulation box. Letting
the number of processors allocated in the low-resolution region
as

PLR = VLR

V
P. (6)

Under such perspective, the processors allocated in the high-
resolution region for sDD are given by

PHR = VHR

V
P, (7)

where VHR
V

is the volume ratio of the high-resolution region and
the total simulation box. The modeling given by Eqs. (3), (4),
(6), and (7) can be written as an extension to Eq. (2),

tsDD ∝ 1

2

(
NLR

PLR
+ NHR

PHR

)

+ 6rcellkhw

(
NLR

PLR
+ NHR

PHR

)2/3

. (8)
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The term (NLR
PLR

+ NHR
PHR

)
2/3

due to particles communication
also includes the coupling term of the communication be-
tween the high- and low-resolution regions. Moreover, the
coupling or resolution transition effect of the pure force
calculation of low and high resolutions is included within the
term (NLR

PLR
+ NHR

PHR
) of Eq. (8). Following the AdResS method

described in Sec. II, the resolution transition effect would be
reflected in the hybrid region (see Fig. 3).

The simplest and straightforward model for the spatial
allocation of particles per processor is reflected in Eq. (8),
with the volume resolution ratios shown in Eqs. (3), (4),
(6), and (7). However, for heterogeneous simulations, such
an approach has two drawbacks: there is an imbalanced
distribution of particles per processor from the beginning
of the simulation and the communication overhead is not
minimized for the heterogeneous transition regions [38]. The
results of employing the model given by Eq. (8) could hinder
both the scalability and speed of the tackled heterogeneous
simulation (as demonstrated in Sec. V). The development
of HeSpaDDA’s model is based on a spatial distribution of
particles of heterogeneous systems, which fulfills the criteria
given in Eq. (9). By substituting Eqs. (3) and (4) with
PLR = P − PHR, a new equation for PHR has been found [see
Eq. (11)]. Consequently, HeSpaDDA modeling treats both
low- and high-resolution regions as equals in terms of the
allocation of particles per processor:

NHR

PHR
= NLR

PLR
. (9)

To this end, Eqs. (6) and (7) turn into Eqs. (10) and (11).
Interestingly, the proposed heterogeneous domain decompo-
sition method is sensitive to both the region size and the
heterogeneity types (resolution) for the processor allocation.
Such modeling optimizes the initial or static distribution of
load and hence minimizes communication overhead. In this
new context, the number of processors distributed in the
low-resolution region is defined as

P hDD
LR = P − P hDD

HR , (10)

where P hDD
HR are the number of processors distributed in the

high-resolution region according to the HeSpaDDA algorithm.
From now on, the nomenclature used in the equations with
superscript hDD correspond to the HeSpaDDA method. By
replacing Eqs. (3), (4), and (10) into Eq. (9) leads to

P hDD
HR = Rres

SHVHR

V + VHR
(
Rres

SH − 1
)P. (11)

The concept behind the coefficient Rres
SH in Eq. (11) is

to emulate an increase of the high-resolution volume by
rescaling it to low-resolution units as shown in Fig. 4(b).
Moreover, to be consistent with such high-resolution region
increment, the denominator of Eq. (11) has been also expanded
to V + VHR(Rres

SH − 1). Note here that V already contains
one volume VHR, and hence the denominator coefficient is
(Rres

SH − 1). Here, we remark that neither the simulation
parameters VHR nor V are scaled or increased for the simulation
run. Nonetheless, HeSpaDDA employs the volume rescaling
for achieving a balanced processor allocation among the
different spatial resolution regions. In light of the limitation of

FIG. 5. Theoretical calculation of the computational time for
the spatial domain-decomposition algorithm [see Eq. (8)] and the
HeSpaDDA one [see Eq. (12)], as a function of a variable number
of processors P . The calculation parameters for the multiscale and
cubic system (a) are: rc = 1.0, rs = 0.3, rcell = rc + rs , Rres

SH = 3, N =
38 084 + (76 916/Rres

SH), V = 1157.625σ 3, VHR = 140.608σ 3, and
VLR = V − VHR. The calculation parameters for the inhomogeneous
and noncubic system (b) are: rc = 0.9, rcell = rc, Rres

SH = 6, N =
20 828 + (124 964/Rres

SH), V = 8192σ 3, VHR = 4096σ 3, and VLR =
V − VHR. All in reduced units with σ = ε = m = 1.

allocating processors per simulation box axes at the simulation
start, the number of processors will be rounded up to the closest
integer for P hDD

HR and P hDD
LR is calculated from Eq. (10).

Thus, the time-scaling law for the HeSpaDDA is

thDD ∝ 1

2

(
NLR

P hDD
LR

+ NHR

P hDD
HR

)

+ 6rcellkhw

(
NLR

P hDD
LR

+ NHR

P hDD
HR

)2/3

. (12)

In Fig. 5(a) theoretical comparison between the scaling laws
of Eqs. (8) and (12) has been carried out. Whereby the
new algorithm (HeSpaDDA) improves the performance of
the former spatial domain decomposition for two archetypical
heterogeneous systems. From the viewpoint of this theoret-
ical framework, the signatures of runtime-based “dynamic”
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FIG. 6. Theoretical calculation of the computational time for
the spatial domain-decomposition algorithm [see Eq. (8)] over
the HeSpaDDA one [see Eq. (12)], as a function of variables
(a) Rres

SH with the simulation parameters: Rres
SH = [2,3,4,5,6,7] and

N = 38 084 + (76 916/Rres
SH). The calculation parameters for the

multiscale “MS” and cubic system are: rc = 1.0, rs = 0.3, rcell =
rc + rs,V = 1157.625σ 3, VHR = 140.608σ 3, VLR = V − VHR, and
P = 64. The calculation parameters for the inhomogeneous “IH” and
noncubic system (b) are: rc = 0.9, rcell = rc, Rres

SH = 6, N = 20 828 +
(124 964/Rres

SH), V = 8192σ 3, VHR = 4096σ 3, and VLR = V − VHR.
All in reduced units with σ = ε = m = 1.

imbalance is disregarded. Certainly the modeling of the here-
presented heterogeneous algorithm is static. Nevertheless, in
the simulation code the method can be combined to external
dynamic load-balancing schemes (shown in Sec. V).

The inhomogeneous system tackled in Fig. 5(a) is similar
in terms of simulation parameters to the ubiquitin solvated in
water (see Sec. IV A). However, in this theoretical example we
considered pure atomistic water in the high-resolution region
(no ubiquitin in the high-resolution region). While Fig. 5(b)
resembles the phase separated binary Lennard-Jones fluid.
Calculating the corresponding computational times for sDD
[Eq. (8)] and hDD [Eq. (12)] as a function of P we observed
in all studied cases improved timing for HeSpaDDA.

Also from the modeling perspective, the ratio tsDD/thDD

varies depending on the tackled system, for the cubic system
a HeSpaDDA reaches a factor ≈1.5 [Fig. 5(a)], while for the
noncubic system this factor is ≈1.3 [Fig. 5(b)]. These results
suggest that decomposing the total number of processors in a
balanced way as a function of the different system resolutions
and asymmetric simulation box axes has a higher limitation
since the processors triplets shall be integer, i.e., Px,Py,Pz ∈
integers. In other words, for cubic systems the resolutions are
scaled equally in every simulation box axis while for noncubic
ones this is tackled for each axis and each resolution. To further
understand the scaling of multiple resolution simulations and
the proposed modeling for the HeSpaDDA algorithm, we
also show how the latter scales with respect to the sDD as
a function of Rres

SH (Fig. 6) and N (Fig. 7). Note that here direct
calculations have been performed which are not taking into
account any platform-dependent communication patterns. In
Fig. 6 we explore how the relative speedup tsDD/thDD performs

FIG. 7. Theoretical calculation of the computational time for
the spatial domain-decomposition algorithm [see Eq. (8)] over
the HeSpaDDA one [see Eq. (12)], as a function of variables
(b) volume V and hence N to maintain a constant density with
the specific simulation parameters: NLR = N 0

LR(VT /V 0
T ) with V 0

T =
1157, N 0

LR = 38 084 and NHR = 76 916. The calculation parameters
for the multiscale “MS” and cubic system are: rc = 1.0, rs =
0.3, rcell = rc + rs , VHR = 5.23, VLR = V − VHR, and P = 160. The
calculation parameters for the inhomogeneous “IH” and noncubic
system (b) are: rc = 0.9, rcell = rc, NLR = N 0

LR(VT /V 0
T ), with V 0

T =
32 × 16 × 16, N 0

LR = 20 828, and NHR = 124 964, VHR = V/2, and
VLR = V − VHR. All in reduced units with σ = ε = m = 1.

as a function of a variable resolution ratio Rres
SH, which in this

illustrative scenario varies from 2:1 to 7:1.
According to this modeling result we show how the relative

speedup increases monotonically with Rres
SH for both systems.

Although the increment of the noncubic system is significantly
lower than the one given for the cubic system, as explained
earlier this is due to the sensitivity on the different resolutions
in each axis of the simulation box. Moreover, for the cubic
case three axes are dual-resolution, while for the noncubic one,
only one axis is prescribed to be dual-resolution (see Fig. 11
in Appendix A). We also observe a monotonic increment in
relative speedup as long as the low-resolution region grows
and the high-resolution region remains constant for both
systems, which is plotted as a function of total number of
particles in Fig. 7. It is worth noting that the scaling for the
noncubic system as a function of the increment of particles
in the low resolution region goes qualitatively in-line with the
cubic system but presenting less speedup. The reason of such
behavior is that the noncubic system in terms of processor
allocation grows only in one of the simulation box axes (see
also Fig. 2).

A clear limitation of the scaling laws presented in this
section is that the underlying communication pattern of the
computing platform is unknown and thus no estimations of the
platform-related load imbalances can be predictively taken into
account. Unless the employed MD package includes a very fine
tuned dynamic load-balancing algorithm. Despite this fact, the
information given by the scaling Eq. (12) serves as qualitative
lower boundary for estimating the duration of inhomogeneous
simulation as a function of the modeled variables.
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B. Algorithm description

1. Processor allocation

The proper allocation of processors in heterogeneous
molecular simulations is crucial for the intrinsic computational
scaling and performance of the production run. In other words,
the computational scaling of heterogeneous simulation at this
stage is not limited by the MD package used. However,
it is constrained to the initial domain decomposition and
hence the correspondence of the number of processors to
different resolution regions of the initial given configuration.
One of the aspects to consider for spatially decomposed
systems is the dimensional sensitivity which is the paral-
lelepiped characteristics of the simulation setups, i.e., cubic
or noncubic. A second aspect to consider is the spatial
heterogeneity ratio Rres

SH [as defined in Eq. (5)] and the
third is definitely the volumes of high and low resolution
regions VHR and VLR, respectively. More details about the
algorithm flow chart and implementation are given in the
Appendix A.

2. Cell partitioning

Once the three-dimensional processors grid has been built,
cell partitioning is required (this flow chart is illustrated in
the Appendix A). To this end, the module for returning the
inhomogeneously distributed cells along each dimension of
the box is used. Within this module the precise “load” in
terms of number of cells are allocated to each processor.
For achieving the cells partitioning, the module requires the
number of processors, Rres

SH and the shape of the heterogeneous
system per dimension. In some heterogeneous simulation
setups, the same amount of processors as amount of cells
could be given. Thereby the algorithm verifies such setups
and resolves if the distribution of cells per processors could
be treated homogeneously or not. In case of homogeneity, the
strict linked-cell-list partitioning is employed.

The cells redistribution is performed by finding the integer
quotient of the number of processors divided by the number
of cells, i.e., qHR = CHR

PHR
and qLR = CLR

PLR
. On the contrary to

the processor allocation module from Sec. III B 1, the cells
partitioning makes emphasis on the low-resolution region. In
other words, for the less expensive region (low-resolution) the
quotient of cells per processor qLR > qHR.

Mathematically the cells in the low-resolution are weighted
as a function of the resolution ratio Rres

SH and the volumes VLR

and VHR. Subject to the numbers of processors and cells there
are cases where no integer quotient is found so that HeSpaDDA
rounds down the real quotient solution and redistribute the
“residual cells.” The latter type of cells are distributed
using a “pseudo-random” mechanisms as detailed in the
Appendix A.

With the goal of making the algorithm available for different
heterogeneous simulation techniques and MD simulation
packages, the algorithm is implemented in ESPResSo++ and
is also available as a stand-alone Python script [51].

IV. SIMULATIONS

The exhibited challenges in terms of parallelization
schemes for heterogeneous molecular simulations have been

thoroughly studied by using two archetypical systems, namely,
an ubiquitin protein solvated in water and the binary Lennard-
Jones fluid. Other technical details like the MD packages
versions and underneath hardware platform used are found
in Appendixes B and C.

A. Ubiquitin in aqueous solution

The system is illustrated in Fig. 1 and contained one protein
molecule solvated in 38 084 water molecules. The simulation
box was a cube of length ≈10.5 nm. In terms of the cell grid,
a cubic decomposition of the system turns into a number
of cells per simulation box side of 8 and hence cell grid
(8 × 8 × 8), where each cell has a side length of 1.3 nm
(rc + rs). The atomistic region was a sphere of radius 2 nm
centered on a protein atom, such that the protein fits the sphere
and thus was completely atomistic at all times. The width of
the hybrid region was 1.0 nm. The benchmarking simulations
presented here were performed using the simulation parame-
ters given in a previous work [30]. The coarse-grained solvent
model was obtained via iterative Boltzmann inversion (IBI)
[52–54]. Nonbonded atomistic and coarse-grained interactions
were interpolated using the force-AdResS approach. The
nonbonded cutoff was 1.0 nm, and a thermodynamic force was
used to counteract the pressure difference between atomistic
and coarse-grained forcefields.

B. Phase separated Lennard-Jones binary fluid

The second simulation setup for benchmarking was a
single-scale Lennard-Jones system of a phase separated 6-to-1
σ binary fluid. All nonbonded interactions were cut off at
0.9 cutoff, and interaction potentials shifted such that the
energies are zero at the cutoff. The simulations were performed
in the canonical ensemble at a temperature of 300 K, for
which we used a Langevin thermostat with friction constant
γ = 0.5 ps−1. The total number of particles in the system is
145 792, with 124 964 particles located in the high-resolution
and 20 828 in the low-resolution regions. The box dimensions
were 32.0 × 16.0 × 16.0 with periodic boundary conditions
in each direction. Both halves of the box were equilibrated
separately and then together. This way we are starting out with
the maximal load imbalance.

V. RESULTS

A. Ubiquitin in aqueous solution

The first system is composed of roughly 115k atoms from
which ≈88% are coarse-grained particles built out of water
molecules. In Fig. 8, the strong scaling results are shown for
both algorithms sDD and HeSpaDDA in terms of performance
hours/ns. The latter is given by the simulation time of each
value of P = [16,32,64,96,128,160] required to perform a
simulation for 1 ns. In all cases for the strong scaling validation
shown in Fig. 8, the HeSpaDDA algorithm is much faster than
sDD up to a speedup factor of 1.5. From the scaling viewpoint,
HeSpaDDA reaches the best performance with 64 processors
while sDD does with 96 (inset in Fig. 8).

We observe that the optimal number of processors for
speeding up the first system goes along with both the shape
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FIG. 8. Force-AdResS simulation of an atomistic protein and its
atomistic hydration layers. The comparison between the simulation
time of the spatial DD (dashed line in red) and HeSpaDDA (line in
green); normalized by performance hours/ns. The inset shows the
ratio between the spatial DD and HeSpaDDA, which corresponds to
the speedup reached by the new algorithm.

of the box and the distribution of particles in the processors
per resolution region. In other words, if we tackle a cubic
simulation domain the best processors-grid distribution will
be a perfect cube, which in the HeSpaDDA case justifies the
value of 64 (4 × 4 × 4). On the other hand, sDD reaches
the minimum simulation time with 96 processors, which
does not fulfill any system cubicity constraints nor the low-
and high-resolution regions demarcation. After reaching the
minimum for both algorithms the speedup factor among
them decreases fast, and reaches ≈1.08 for 160 processors
(referring to the inset of Fig. 8). The reasons for the relative
speedup reduction employing for example 160 processors
are mainly three: (1) this number of processors cannot be
decomposed as a perfect cube which increases the subdomains
communication overhead; (2) the amount of particles per
processor is decreased to roughly 230, which also increases
the parallelization bookkeeping; and (3) during the simulation
runtime imbalances are generated due to the fact that the
ubiquitin solvated in water example does not provide any
dynamic load-balancing algorithm. We also aimed to represent
a system without dynamic load balancing and compare it
to another one that includes dynamic load balancing (see
Sec. V B).

As suggested in the modeling part of Sec. III A, the scaling
behavior of cubic setups with larger low-resolution regions
and using the HeSpaDDA algorithm is expected to be much
faster compared to the sDD one. However, the current system
reflects a worst-case scenario from the domain decomposition
viewpoint, because the number of cells per box lengths
(lx,ly,lz) is eight with five cells under influence of the atomistic
and hybrid regions and only three remaining cells are left for
cells partitioning in the low-resolution region. The values of
number of cells are calculated by directly dividing the box
lengths by (rc + rs).

FIG. 9. Phase-separated Lennard-Jones binary fluid. The com-
parison between the simulation time of GROMACS-2016 load
balancing (dashed and thick line in red) and HeSpaDDA combined
with GROMACS-2016 load balancing (line in green); normalized
by performance hours/ns. The inset shows the ratio between the
GROMACS-2016 load balancing and HeSpaDDA combined with
GROMACS-2016 load balancing, which corresponds to the speedup
reached by the new algorithm.

B. Phase-separated Lennard-Jones binary fluid

The second simulation setup for benchmarking was a
single-scale Lennard-Jones system of a phase-separated binary
fluid. The heterogeneity ratio Rres

SH is 6:1 based on σ . Such
system comprises ≈145 k particles, where 50% are low
resolution built out as the ratio Rres

SH.
In Fig. 9, we show a direct comparison of the strong scaling

simulations performed for both algorithms HeSpaDDA and
GROMACS-2016 [55] domain decomposition with notation
“DLB.” Interestingly, for this system we combined HeS-
paDDA to the DLB algorithm included in GROMACS-2016
with notation “hDD+DLB” (Fig. 9). The results are again
shown in terms of performance hours/ns and the strong scaling
range is given as P = [32,48,64,128,160]. These results
indicate that for P = [48,64,128,160] both algorithms show
the same performance within the error bars given in Fig. 9.

Similar results have been achieved because the initial
processors triplets (Px,Py,Pz) given by both algorithms at the
beginning of the simulation gave exactly the same values.
In other words, the percolation of triplets to find the total
number of processors for P = [48,64,128,160] is limited
in those cases given the dimensions of the noncubic box.
However, for P = 32 the triplets given by the combination
of HeSpaDDA and GROMACS-2016 dynamic load balancing
shows an speedup in the performance of a factor ≈1.32 (see
the inset in Fig. 9). Curiously the use of HeSpaDDA does not
include any overhead cost, nor implementation and it works
as mentioned before in a predictive manner. It is important
to remark that no changes to GROMACS-2016 have been
performed but changing the initial processors triplets form the
command line. Hence only the processor allocation module of
HeSpaDDA has been used and the tuning of cells distribution
relies on the one given by GROMACS-2016.
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Another interesting aspect observed in Fig. 9 is the strong
scaling of the system as a function of P which is clearly
superior than the previously tackled system (see Sec. V A). A
direct explanation for such observation comes from the fact
that in the phase separated Lennard-Jones binary fluid DLB
features are enabled while the previous system is configured
purely with static cells and processor allocations.

VI. DISCUSSION AND CONCLUSION

While traditional molecular simulations are mostly per-
formed with homogeneous resolution setups for all molecules
in a simulation box, in heterogeneous schemes, the simulation
box is typically divided in at least two regions, namely, the low-
resolution and high-resolution ones. We have developed an
algorithm to achieve such domain decomposition requirements
by adding resolution-sensitivity to the spatial domain decom-
position and combining it with an initial rearrangement of the
subdomain walls in terms of cells per processor. We come
closer to the particular requirements of adaptive resolution
schemes in terms of scalability and relative speedups for
archetypical examples an AdResS biomolecule in solution
and a binary Lennard-Jones fluid. Remarkably, the tackled
AdResS setup represents an archetypical system from the
domain decomposition viewpoint where the low-resolution
region has parsimonious dimensions. However HeSpaDDA
is faster by a factor up to 1.5 than the spatial DD algorithm. A
modeling framework has been also provided for HeSpaDDA in
Sec. III A. We recommend to use such predictive modeling in
an a priori way before starting to simulate any heterogeneous
system like the ones described here.

Our results also show that for the binary Lennard-Jones
fluid, HeSpaDDA combined to an efficient DLB algorithm
can reach a speedup factor of ≈1.32.

HeSpaDDA algorithm is conceived to assign a parsi-
monious amount of processors for the whole simulation
production run. This makes an heterogeneous system as
scalable as the condition NHR

PHR
= NLR

PLR
will allow. Furthermore,

we observed that HeSpaDDA speeds up the initial run of
any heterogeneous simulations. In other words, multiscale
simulations are faster from their beginning and ready to be
tackled with further dynamic load-balancing alternatives for
the production run where the underlying hardware of the HPC
environment may introduce runtime imbalance, as mentioned
in Sec. III and shown in Sec. V.

In addition to the benchmark results, a theoretical modeling
for the algorithm and the scaling law of computation time
are provided. These scaling laws are favorable for exploring
the upper boundaries in terms of scalability as a function of
the system size or multiscale resolution ratio. Consequently
mathematical details of the HeSpaDDA are presented, as well
as, the algorithm flow charts and implementation. With the
final goal that HeSpaDDA algorithm could be used in other
multiscale techniques and/or other MD packages.

The envisioned applications for the HeSpaDDA algorithm
on multiple resolution methods aim to increase scalability,
and hence make larger biomolecular and advanced materials
simulations more feasible.

Besides the direct extensions of the present work to new
systems of multiple spatial resolution and or single-scale

inhomogeneous binary mixtures, the algorithm developed here
and the referenced systems paves the way to studying more
complex systems, such as evaporation, crystallization and
active matter processes whenever they accomplish the slowly
varying system assumption.

On top of the aspects described above, the HeSpaDDA
method does not introduce any time overhead to the simulation
setup nor the simulation run since it is a highly optimized
algebraic function. This has been shown in Sec. V B, where
HeSpaDDA is complementary to a dynamic load-balancing
technique at no additional time overhead.
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APPENDIX A: HESPADDA ALGORITHM DESCRIPTION

1. Processor allocation

We start by describing the HeSpaDDA algorithm flow
chart for the processor allocation as illustrated in Fig. 10.
In terms of processors, HeSpaDDA is allocating higher
priority to the high-resolution regions according to equation

FIG. 10. Flow chart of the first module within HeSpaDDA algo-
rithm devoted to the allocation of processors along the heterogeneous
simulation setup. The present module provides the processors grid in
terms of Px,Py,Pz.
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FIG. 11. Description of the geometrical characteristics of the heterogeneous molecular systems like (a) cubic and spherical; (b) noncubic
and slablike. The illustration also denotes which axis in a certain type of geometrical configuration will be considered as single or dual
resolution.

P hDD
HR = Rres

SHVHR

V +VHR(Rres
SH−1)P as described in the modeling section

of this article. Consequently, more processors-per-cells will
be available in the box region where the high-resolution is
located than in the low-resolution one. In addition, the overall
allocation of processors per simulation box axis is thoroughly
controlled by verifying that the total number of processors in
each simulation box axis does not exceed the number of cells
per box axis (i.e., X,Y,Z).

For slablike high-resolution configurations there is a sup-
plementary control flow which based on the Rres

SH and the
number of processors per axis (i.e., Px,Py,Pz) distinguishes
where resources should be assigned according to a single (ho-
mogeneous) or dual resolutions (heterogeneous) as depicted
in Fig. 11. Another example of a single-resolution spatial DD
within HeSpaDDA is having a small number of processors
per axis. For example, let’s consider P = 8, whereas for a
cubic configuration we have Px = Py = Pz = 2, and hence the
processors allocation cannot be efficient under a heterogeneous
DD scheme.

2. Cell partitioning

Once the three-dimensional processors grid has been built,
cell partitioning is required (this flow chart is illustrated in
Fig. 12). To this end, the module for returning the inhomo-
geneously distributed cells (or cells neighbor-list) along each
axis of the box is called. Within this module the precise load
in terms of number of cells are allocated to each processor.
For achieving the cell partitioning, the module requires the
number of processors, Rres

SH and the shape of the heterogeneous
system per box axis. In some heterogeneous simulation setups,
the same amount of processors as amount of cells could be
given. Thereby, the algorithm verifies such setups and resolves
if the distribution of cells per processors could be treated
homogeneously or not. In case of homogeneity, the strict
linked-cell-list partitioning will be applied.

For heterogeneous systems where the total number of
cells and processors differ, a new cells distribution scheme
is presented. Such a scheme assumes beforehand that the total
number of cells in the system can be symmetrically divided by

two for each box axis, i.e., X, Y , Z. Hence, a first function is
called to start the half-size decomposition (in the flowchart of
Fig. 12 found as halfDecomp).

The advantage of the half-symmetric decomposition ap-
pears when the symmetry condition is fulfilled and thus the
“half-decomposed system” can be mirrored. Consequently, a
rapid whole domain decomposition will be achieved. However,
HeSpaDDA is also able to tackle asymmetric cases by means
of the subsequent cells redistribution (which can be found
in Fig. 12 as addHsymmetry). The cells redistribution is
performed by finding the integer quotient of the number of
cells divided by the number of processors, i.e., CHR/PHR and
CLR/PLR. Contrary to the processor allocation module from
Sec. III B 1, the cells partitioning assigns more weight in terms
of cells to the low-resolution region. In other words, for the
less expensive region (low-resolution) the ratio of cells per
processor CLR/PLR is mostly higher that CHR/PHR.

Mathematically the cells in the low-resolution region are
weighted as a function of the resolution ratio Rres

SH (RatioSH)
and the volumes VLR and VHR. Subject to the numbers of
processors and cells there are cases where no integer quotient
is found so that HeSpaDDA rounds down the real quotient
solution and redistribute the “residual cells.” The latter type
of cells are distributed using a “pseudorandom” mechanism.
This mechanism controls the “residual cells” distribution by
assigning flags to the processors that already contain one
“residual cell,” so that they will not repeatedly be assigned
to the same processor. In the code [51] such functions
are embedded in the addHsymmetry function (see Fig. 12).
As a final step the algorithm will adapt the current cells
partitioning to the neighbor-list data structure employed in
a given simulation package. For example, a code based on the
linked-cell-list algorithm.

The algorithm is also sensitive to ill-conditioned hetero-
geneous setup and therefore messages will be displayed as a
warning of missing scalability or performance.

In Fig. 11(a), the center of the simulation box correspond to
the center of the high-resolution region. However, if the initial
simulation setup is not placing the high-resolution region in
the center of the simulation box, HeSpaDDA calculates the
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FIG. 12. Flow chart of the second module within HeSpaDDA
algorithm devoted to distribution of cells along coordinates in each
subdomain, according to the high- and low-resolution regions of the
heterogeneous simulation setup.

offset between those centers by considering periodic boundary
conditions and hence the cells partitioning will be shifted by
the nearest integer quotient offset/rcell.

With the goal of making the algorithm available for differ-
ent heterogeneous simulation techniques and corresponding
MD simulation packages, the algorithm is implemented in
ESPResSo++ and is available as an stand-alone Python
script.

APPENDIX B: SIMULATION SETUP

In the presented work, two systems have been tackled: the
multiscale protein solvated in water and the Lennard-Jones
binary fluid.

1. Ubiquitin in aqueous solution

The simulations have been carried out by building the
codes with Intel MPI compiler v14.0, Infiniband-Cluster, and
two versions of ESPResSo++: the first (v1.9.4) uses an
spatial domain decomposition, while the second is publicly
available within this paper also on ESPResSo++ github.
Each simulation was run for ten thousand steps and with a
variable number of processors (P = [16,32,64,96,128,160]).
The skin was optimized for each system and for P = 16 (using
the TuneSkin function of ESPResSo++ v1.9.4). dt of the
protein in solution was 1 fs. Only the time spent integrating
the equations of motion was taken into account, i.e., no file
I/O was considered. Note also that the values given are the
average times of a total of five runs for each data point in the
article (see Sec. V).

2. Phase separated Lennard-Jones binary fluid

For the second system, the simulations have been carried
out by building the codes with Intel MPI compiler v14.0,
Infiniband-Cluster, and one version of GROMACS-2016,
which has an embedded dynamic load-balancing algorithm
that has been employed. Note that for the simulations with
GROMACS, there are not two versions because such package
allows to chose the number of processors per simulation box
axis in advance. Each simulation was run for ten thousand steps
with a variable number of processors (P = [32,64,128,160])
and dt of the 1 fs. Only the time spent integrating the equations
of motion was taken into account, i.e., no file I/O was consid-
ered. Note also that the values given are the average times of a
total of 10 runs for each data point in the article (see Sec. V).
We have added more runs in this second case since we tackle a
simulation with the dynamic load-balancing feature enabled.

APPENDIX C: IMPLEMENTATION

The validation and benchmarks have been carried out after
a new implementation on the current release (v1.9.4) of the
ESPResSo++ package. This release offers an homogeneous-
spatial domain decomposition scheme combined with the
linked-cell-list algorithm [6]. The HeSpaDDA algorithm
needed the following backward compatible modifications to
ESPResSo++ (v1.9.4): new data structure for the subdo-
mains cells neighbor-lists neiListX, neiListY and neiListZ, an
iterative function that allocates processors and one function
that distributes cells according to the given resolution types
per box axis X, Y , Z and ratioSH. We have provided a
brief overview of those modifications, while further code
details can be found in the ESPResSo++ github repository:
https://github.com/espressopp/espressopp.
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