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Abstract: | study a realistic protein model using four advanced Moraedtechniques: mul-

ticanonical Monte Carlo, parallel tempering, Wang-Landampling and simulated tempering.
The comparison showed that there are problems with erggdicihe small energy region of
big peptides due to the size of the configuration space anHigfreenergy barriers. | discuss
modifications of these algorithms that partly overcomedtmsblems.

Introduction

Protein are the nanomachines responsible for nearly evecggs in our lives, e.g. transporting molecules,
catalyzing biochemical reactions and fighting infections.

All proteins are build out of 20 different aminoacids. 1 \ %
unique 3D structure of a naturally occurring protein is N “
\ B

termined by its amino acid sequence. These structure

responsible for the function of the protein. LN / L

My interest is in the process of folding, especially misf e \

ing events, which cause various diseases. After recorts - S \\\

ing the folding process this knownledge enables the d¢ \m\\\d§
of new drugs with customized properties. Wy ' \ ‘“\
But proteins consist of many atoms with not wellknc ~ ! y
interactions making an investigation difficult. So | have \l
think about a model for proteins and methods to researc ' —~

Basics of Computional Physics

There are two numerical ways of finding solutions: Molecudgmnamics and Monte Carlo. Molecular
Dynamics solves the equations of motion for every singlenagtep by step numerically, but this is very
time consuming because of the many interactions causedebgrdat number of other atoms. Monte
Carlo is used to calculate the statistical properties oftthele system consisting of all atoms, Molecular
Dynamics provides statistical properties, too. Such ptmxeare, e.g., energy, radius of gyration, heat
capacity and end-to-end distance. | am not interested itirtiee development of individual properties
but in the statistic averages, so | will discuss only theitiaal properties in this report.



Basics of Satistical Physics

For ease of notation | will speak about states instead of gorstions and expect that the energy has
discrete values, which is a simplification, but as | want tplement a model in a computer | need to
discretize. If the system interacts with a reservoir at sstamt temperaturé’, in equilibrium every state
p occurs with a certain probability,,. Gibbs showed in 1902 that these occupation probabiliies a
given by:

e_EM/kBT
T, e kT

whereF, is the energy of the stajeand k; is the Boltzmann’s constant. | denatgkg 7" with 3, which
is called the inverse temperature. It holds that

pu(T)

pu(T) o e Pbu,

This distribution is called Boltzmann distribution. | cagwrite the distribution of the states into a dis-
tribution of the energies

Q(E)e PP
T = s ame

whereQ)(E) is the density of states counting the number of states withggrEe. The distribution remains
unchanged if | replac€(E) by C - Q(FE). If the density of states is known, | obtain the distributiafn
the energies and therefore the meanvalues of the energy.

If | measure some quantit§) in an experiment repeatedly | can calculate the expectatidue of the
quantity (@). This value is given as the quantity in a state times the catoop probability of that state,
summed over all possible states

(QUT) =Y Qupu(T).
nw
Or, if the quantity can explicitly be described in terms aof #mergy,

(@N(T) =) QE)P(E,T).
E

Monte Carlo Smulations

Usually a measurement does not take infinite time and themsysill not pass through every state in the
sum of expection value. Therefore | can reduce the sum frbpoakible states to the important states.
This procedure is callesnportance sampling.

To produce such a subset of important states | use a Markown @hacess which produces a new state
v out of a given statg with some transition probability’ (1. — v).

P(u——;y) v P(V——;)\) A

This process has to fulfill some conditions:

e Normalization:) , P(p — v) =1
This is necessary to ensure that the transition propentees@malized and that at least one tran-
sition is possible.

e Ergodicity:
It must be possible that every state can be reached from stegryin a finite number of steps.
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e Detailed Balances, P(y — v) = s, P(v — p)
If this condition is satisfied, the occupation probabititief the states in the chain are givendy

From a chain of\/ measurement af | can calculate an estimator of the expection value .

M —1.,—BE;
(1) = izt Qisi €77
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For the case of a Boltzmann distributed chain | get

M .
Q) = ==

The only open question is the choice of the transition proibials, | take the choice of Metropolis [1].

P(i — v) = min (1, 3—”>

Sp

Fors, = p, this is the normal Metropolis Update.

Advanced Monte Carlo

The normal Metropolis Update is inefficient in si
ulations of systems such as proteins that are ch.
terized by a rough energy landscape. Small cha
in configuration can cause great changes in en
If the system finds a state with an energy smz
than all the states the update could reach in the
step, a so called local minima (see Fig. to the r
[2]), the probability to leave a local minima falls ¢
exponentially with the height of the energy barr
Hence there is a need for better algorithms thar
normal Metropolis Update.

Multicanonical Smulations

Here, the idea [3] is to sample all possible energies withripesgual probability. This helps solving

problems caused by big differences in the density of statéshacan go over 100 orders of magnitude

for proteins. The distribution to sample is the multicamanhidistribution
Puuca(E) = WmucaQ(E) ~ constant

The densityQ2( E) contains all energy information about the system but theitlers a priori unknown,

so the multicanonical weightd/yiyca( E') are also unknown and need to be determined. In this algorithm

the multicanonical weights are the input to the Metropopidates,, = Wyuca(E,,).

One way to determine the weights is the multicanonical #onr{4] which is based on some conditions:

e Discrete energies with smallest energy differeace

e Histogram entried? (E) are uncorrelated



| rewrite the weight factor:

Winueq = & PE)E+a(E)

whereb(E) is the mircocanonical temperature an@®) the mircocanonical free energy. These two
guantities are linked by the definition of the mircocanohieanperature:
a(E—¢)=a(E)+ (b(E —¢€) —b(E))E.

| choosea(Emax) = 0. For the beginning | usé’(E) = 0 = a°(E) andg’(E) = 0 as normalization
parameter. Then the recursion works as follows:
e Determine the:th histogram of the energig$” (E) with the help ofill}} ¢4
n(p) — H"(E+oH"(E)
o K"(E) = H (Et+e)+H(E)
o g"TH(E) = g"(E) + r"(E)

o YH(E) = b(B) + iy - B )

After doing the recursiomyyca times withiyuca sweeps, | get a good estimate for the multicanonical
weights. The number of runsyyca is reached if the weights change only very little in compariso
the last run. Then | have to do a final runmafy,ca sSweeps with fixed weights in which | measure all
interesting quantities.

Wang-Landau Algorithm

All the energy information are given by the density of statd4”). The Wang-Landau algorithm [5]
was designed to estimate the density of states directlyg i§ha different starting point than the idea of
multicanonical simulations, but it turns out to be a goodiinp the multicanonical final run.

First | initialize all weightsiW (E,) = 1 = s, and the shape parametér= e'. Now | perform a
Metropolis update and change the weight of the visited gneydVw. (E) — Ww(E)/f. After ny
sweeps | change the shape parametef by +/f and go on. This change also gives the beginning of
the next run. If the shape parameter is approximately 1 thalation is finished and an estimate for the
density of states is given by:

QE) =1/WwL(E)

This algorithm does not fulfill detailed balance and theradsway of calculating the errors of the
density. To solve these problems | using the Wang-Landaght&is input for the multicanonical final
run because:

WMuCa(E) X 1/Q(E) = WWL(E)
Another problem is that the energies have to be discreteinsiniy is necessary.
Random Tempering

Simulated Tempering [6] expands the configuration spadearitextra temperature coordinate. | perform
two kinds of updates:

e Normal Metropolis update:

/ . e_ﬁE,
P(E—>E):m1n 1,@



e Temperature change update:

, . e‘ﬁ’E—g(ﬁl)
P(ﬂﬁﬂ):mln 1,m

The system has different equilibration energies at diffetemperatures, so that the sampled configura-
tion space is much bigger. Without the weights) the acceptance ratio of the temperature changes are
very small so | introduce these weights, but now | have torddtee them first. | choose to do it with the
help of the Wang-Landau method.

First | initial all weightsg(E) = 0 and the shape parameter= 1. Then | perform the updates in
alternating order changing the weights of the visited tempee after every cycle by(T') — g(T') + h.

If the histogram of the visited temperaturd$7") becomes sufficiently flat | change the shape parameter
by h = h/2. Sufficiently flat means the deviation from the mean is at 2686 of the mean. Continue
until ~ ~ 0. Because this new method performs a random walk in temperapace | call this enriched
version of simulated tempering the random tempering method

Parallel Tempering

This method [7] is very similar to simulated tempering butrkgwith n copies of the system instead of
one. Every system is simulated at a different temperaturéd perform two kind of updates:

e Normal Metropolis update:
/ . e_ﬁE/
P(E—>E):In1n 1,@
e Configuration swap of 2 systems:

g BuBv—PvEu
P(p < v) = min <1 >

’ e_/BMEI—L_/BVEV
There are no weights to determine. This method has a natapémentation on parallel computers.

Protein Simulations

The methods described above are used in many different Getasnputer simulation and also in protein
simulation. What makes protein folding so complicated is tbugh energy landscape caused by the
interactions of the great number of atoms. One simplifiedmgtson of the interactions is given by the
following force field.

Force Field
The energy function [8] | used is measured in kcal/mol:

Etot = ELJ + Eel + Ehb + Etors

where

e Lennard-Jones terdi; = 3", (ilg _ 561>

T’Lj T‘ZJ
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e Electrostatic termfg = > 33244,

1,7 €T44

12
Tij Tij

e Hydrogen-bond terntn, = Y. ; (C - %)
e Torsion termEiors = >, Uj(1 £ cos(n;x;))

The missing constants are taken from [8]. The Lennard-Jteres takes the radii of the atoms and
repulsion of the electron clouds of the atoms into accoulm&,lectrostatic term gives the interactions
between charged patrticles, the Hydrogen-bond term desctile energy caused by the polarization of
the atom and the torsion term stands for the energy stordebitotsion of the bonds.

Objects of Sudies

Itis not possible to understand all aspects of folding inwmgersal protein. | study three different small
peptides.

e Met-enkephalin

Tyr — Gly — Gly — Phe— Met

This is the work horse of algorithms tested in the field of girfolding.

e Alanine 10
Ala — Ala — Ala — Ala — Ala — Ala — Ala — Ala — Ala — Ala

A littler bigger than Met-enkephalin, but still with simpfgoperties.

e Trp-Cage
\ 6
Asn—Leu— Tyr — lle — GIn — Trp — Leu— Lys — Asp— Gly— ) $)’
( 4‘;'§’
Gly — Pro— Ser— Ser— Gly — Arg — Pro— Pro— Pro— Ser 4 y

This is a much bigger molecule with nontrivial folding belmand a characteristic groundstate.

Results

Numerical Comparison of Multicanonical Smulation and Wang-Landau Sampling

As it is the first time that the Wang-Landau algorithm was usggther with this force field I first com-
pare the density of states calculated with Wang-Landau rehlts from a multicanonical simulation.
Good analogy can be seen in Figure 1. The graphs are norchalizéhe energy bin next to the highest
energy. For technical reasons the last bin of the multicaabsimulation is filled with all higher ener-
gies. Out of this density the meanvalue of the energy wasiledéd (see Fig. 2) and showed good results
at temperatures above room temperature and small devittiower temperatures.

The final simulation runs always had a lengttmafiuca = 100.000 sweeps. The bin size was 1 kcal/mol.
The interesting energy region was12...60] kcal/mol for Alanine 10 and—12...20] kcal/mol for
Met-enkephalin. For weight determination in multican@hisimulation | used 20 recursion run with
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Met-enkephalin Alanine 10
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Fig. 1: Comparison of the density of states with multican@imulation and Wang Landau sampling for
Met-enkephalin and Alanine 10. Good analogy showed up ih bases.
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Fig. 2: Comparison of the meanvalue of the energies withipaulbnical simulation and Wang Landau
sampling for Met-enkephalin and Alanine 10. Good analogylmaseen for room temperature or higher
and small deviation for the lower energy area.

nmuca = 5.000 sweeps and 10 runs withy, = 10.000 sweeps for Wang-Landau sampling. Depend-
ing on the start configuration the weight finding with Wangidlau was around 10% faster than the
multicanonical recursion.

| also tried using the Wang-Landau algorithm for Trp-cagst, ib fails. The problem is the big size
of the configuration space. The interesting energy range i30. .. 50] kcal/mol. This caused also a
big difference in the order of magnitude of the density ofetaThe system gets stuck in some state
around the ground state and has no chance to move to highgiesnagain so the meanvalue for small
temperatures becomes too small (see Fig. 4). Multicanbsicailations have the same problems here.
For big peptides there are too many configurations with theesanergy. It is not possible to visit all in
finite time. Configuration with similar energy do not havegkioverlap, which means a big distance in
configuration space, so | need to try other methods.
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Met-enkephalin
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Fig. 3: Comparison of multicanonical simulation and randempering for Met-enkephalin. The sam-
pled temperature point of random tempering fit together thighcurve of the multicanonical simulation.

Comparison of Random Tempering and Multicanonical Smulation

Multicanonical simulations and Wang-Landau sampling giseinformation about all temperatures in
one simulation. In most cases | am just interested in valtiesrae fixed values of temperature. As in
the last section, | first want to test if random tempering 8ar@rrectly for Met-enkephalin. | choose ten
temperatures between 100 K and 1000 K. The temperaturesjaidistant on the inverse temperature
scale because the distribution dependsiomt 7.

The determination of the weights for random tempering takesind 1.000.000 sweeps in 15 runs to
get a sufficiently flat distribution in temperature. It alsdes the same number of sweeps to get a flat
distribution in the final run with fixed weights. In companisto multicanonical simulation this is a long
time but the results look similar. Results for Met-enkephale shown in Fig. 3.

For Trp-cage the distribution is not flat even after the 10 of determining the weights. In the final
run the distribution is not flat either and causes some pnolidlow energy regions (see Fig. 4).

Comparison with Parallel Tempering
As even random tempering has problem with low energy regiotest parallel tempering for Trp-cage

on the supercomputer JUMP in the Research Center Jilich.tiGwe 16 CPUs< 10 h with 1.100.000
sweeps and the other time 10 CPX4.0 h with 1.000.000 sweeps. The results are consistent eien w
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Trp-cage
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Fig. 4: Comparison of several methods for Trp-cage. Randanpéring and Wang-Landau sampling
have problem in the low energy regions. High temperaturatpdit together.

different temperature points (Fig. 4). They have smallrdbars and are repeatable.

Conclusion

All methods | have tested except parallel tempering havdymed problems with low temperatures and
therefore with the low energy region of big peptides. Théstieal results are not repeatable with other
starting conditions. This is caused by the size of the cordiian space and the large energy barriers. For
the smallest tested peptides all methods work well. Mayisepbssible to get better results in a longer
simulation run. But in comparison to parallel tempering éffecency is bad.

Outlook

Because of the very long simulation times it is necessaratalfelize the broad histogram methods like
multicanonical simulation and Wang-Landau sampling. Tasild help to get the same information in
shorter time, so that | can have more information about tiséegy in the same time. Till now | cannot
even think about simulating a real protein on a superconnpute

Also | have to think about a way to overcome those configunatiarriers. Maybe the choice of the
interestering regions in the configuration space have todme dirst. Also getting a flat histogram in
energy space is not always the best, a flat distribution inmlapeo the ground state, which must be
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experimental known, may be better.
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