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Abstract: I study a realistic protein model using four advanced Monte Carlo techniques: mul-
ticanonical Monte Carlo, parallel tempering, Wang-Landausampling and simulated tempering.
The comparison showed that there are problems with ergodicity in the small energy region of
big peptides due to the size of the configuration space and thehigh energy barriers. I discuss
modifications of these algorithms that partly overcome these problems.

Introduction

Protein are the nanomachines responsible for nearly every process in our lives, e.g. transporting molecules,
catalyzing biochemical reactions and fighting infections.

All proteins are build out of 20 different aminoacids. The
unique 3D structure of a naturally occurring protein is de-
termined by its amino acid sequence. These structures are
responsible for the function of the protein.
My interest is in the process of folding, especially misfold-
ing events, which cause various diseases. After reconstruct-
ing the folding process this knownledge enables the design
of new drugs with customized properties.
But proteins consist of many atoms with not wellknown
interactions making an investigation difficult. So I have to
think about a model for proteins and methods to research it.

Basics of Computional Physics

There are two numerical ways of finding solutions: MolecularDynamics and Monte Carlo. Molecular
Dynamics solves the equations of motion for every single atom step by step numerically, but this is very
time consuming because of the many interactions caused by the great number of other atoms. Monte
Carlo is used to calculate the statistical properties of thewhole system consisting of all atoms, Molecular
Dynamics provides statistical properties, too. Such properties are, e.g., energy, radius of gyration, heat
capacity and end-to-end distance. I am not interested in thetime development of individual properties
but in the statistic averages, so I will discuss only the statistical properties in this report.



Basics of Statistical Physics

For ease of notation I will speak about states instead of configurations and expect that the energy has
discrete values, which is a simplification, but as I want to implement a model in a computer I need to
discretize. If the system interacts with a reservoir at a constant temperatureT , in equilibrium every state
µ occurs with a certain probabilitypµ. Gibbs showed in 1902 that these occupation probabilities are
given by:

pµ(T ) =
e−Eµ/kBT

∑

ν e−Eν/kBT
,

whereEµ is the energy of the stateµ and kB is the Boltzmann’s constant. I denote1/kBT with β, which
is called the inverse temperature. It holds that

pµ(T ) ∝ e−βEµ ,

This distribution is called Boltzmann distribution. I can rewrite the distribution of the states into a dis-
tribution of the energies

P (E,T ) =
Ω(E)e−βE

∑

E Ω(E)e−βE
,

whereΩ(E) is the density of states counting the number of states with energyE. The distribution remains
unchanged if I replaceΩ(E) by C · Ω(E). If the density of states is known, I obtain the distributionof
the energies and therefore the meanvalues of the energy.

If I measure some quantityQ in an experiment repeatedly I can calculate the expectationvalue of the
quantity〈Q〉. This value is given as the quantity in a state times the occupation probability of that state,
summed over all possible states

〈Q〉(T ) =
∑

µ

Qµpµ(T ).

Or, if the quantity can explicitly be described in terms of the energy,

〈Q〉(T ) =
∑

E

Q(E)P (E,T ).

Monte Carlo Simulations

Usually a measurement does not take infinite time and the system will not pass through every state in the
sum of expection value. Therefore I can reduce the sum from all possible states to the important states.
This procedure is calledimportance sampling.

To produce such a subset of important states I use a Markov Chain process which produces a new state
ν out of a given stateµ with some transition probabilityP (µ → ν).

µ
P (µ→ν)−→ ν

P (ν→λ)−→ λ

This process has to fulfill some conditions:

• Normalization:
∑

ν P (µ → ν) = 1
This is necessary to ensure that the transition properties are normalized and that at least one tran-
sition is possible.

• Ergodicity:
It must be possible that every state can be reached from everystate in a finite number of steps.
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• Detailed Balance:sµP (µ → ν) = sνP (ν → µ)
If this condition is satisfied, the occupation probabilities of the states in the chain are given bysµ.

From a chain ofM measurement ofQ I can calculate an estimator of the expection value .

Q̃(T ) =

∑M
i=1 Qis

−1
i e−βEi

∑

j s−1
j e−βEj

For the case of a Boltzmann distributed chain I get

Q̃(T ) =

∑M
i=1 Qi

M

The only open question is the choice of the transition probabilities, I take the choice of Metropolis [1].

P (µ → ν) = min

(

1,
sν

sµ

)

Forsµ = pµ this is the normal Metropolis Update.

Advanced Monte Carlo

The normal Metropolis Update is inefficient in sim-
ulations of systems such as proteins that are charac-
terized by a rough energy landscape. Small changes
in configuration can cause great changes in energy.
If the system finds a state with an energy smaller
than all the states the update could reach in the next
step, a so called local minima (see Fig. to the right
[2]), the probability to leave a local minima falls off
exponentially with the height of the energy barrier.
Hence there is a need for better algorithms than the
normal Metropolis Update.

Multicanonical Simulations

Here, the idea [3] is to sample all possible energies with nearly equal probability. This helps solving
problems caused by big differences in the density of states which can go over 100 orders of magnitude
for proteins. The distribution to sample is the multicanonical distribution

PMuCa(E) = WMuCaΩ(E) ≈ constant

The densityΩ(E) contains all energy information about the system but the density is a priori unknown,
so the multicanonical weightsWMuCa(E) are also unknown and need to be determined. In this algorithm
the multicanonical weights are the input to the Metropolis updatesµ = WMuCa(Eµ).

One way to determine the weights is the multicanonical recursion [4] which is based on some conditions:

• Discrete energies with smallest energy differenceǫ

• Histogram entriesH(E) are uncorrelated
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I rewrite the weight factor:
WMuCa = e−b(E)E+a(E)

whereb(E) is the mircocanonical temperature anda(E) the mircocanonical free energy. These two
quantities are linked by the definition of the mircocanonical temperature:

a(E − ǫ) = a(E) + (b(E − ǫ) − b(E))E.

I choosea(Emax) = 0. For the beginning I useb0(E) = 0 = a0(E) andg0(E) = 0 as normalization
parameter. Then the recursion works as follows:

• Determine thenth histogram of the energiesHn(E) with the help ofW n
MuCa

• κn(E) = Hn(E+ǫ)Hn(E)
Hn(E+ǫ)+Hn(E)

• gn+1(E) = gn(E) + κn(E)

• bn+1(E) = bn(E) + κn(E)
gn+1(E) ·

ln Hn(E+ǫ)−ln Hn(E)
ǫ

After doing the recursionnMuCa times withlMuCa sweeps, I get a good estimate for the multicanonical
weights. The number of runsnMuCa is reached if the weights change only very little in comparison to
the last run. Then I have to do a final run ofmMuCa sweeps with fixed weights in which I measure all
interesting quantities.

Wang-Landau Algorithm

All the energy information are given by the density of statesΩ(E). The Wang-Landau algorithm [5]
was designed to estimate the density of states directly. This is a different starting point than the idea of
multicanonical simulations, but it turns out to be a good input to the multicanonical final run.

First I initialize all weightsWWL(Eµ) = 1 = sµ and the shape parameterf = e1. Now I perform a
Metropolis update and change the weight of the visited energy by WWL(E) → WWL(E)/f . After nWL

sweeps I change the shape parameter byf →
√

f and go on. This change also gives the beginning of
the next run. If the shape parameter is approximately 1 the simulation is finished and an estimate for the
density of states is given by:

Ω(E) = 1/WWL(E)

This algorithm does not fulfill detailed balance and there isno way of calculating the errors of the
density. To solve these problems I using the Wang-Landau weights as input for the multicanonical final
run because:

WMuCa(E) ∝ 1/Ω(E) = WWL(E)

Another problem is that the energies have to be discrete, so binning is necessary.

Random Tempering

Simulated Tempering [6] expands the configuration space with an extra temperature coordinate. I perform
two kinds of updates:

• Normal Metropolis update:

P (E → E′) = min

(

1,
e−βE′

e−βE

)
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• Temperature change update:

P (β → β′) = min

(

1,
e−β′E−g(β′)

e−βE−g(β)

)

The system has different equilibration energies at different temperatures, so that the sampled configura-
tion space is much bigger. Without the weightsg(β) the acceptance ratio of the temperature changes are
very small so I introduce these weights, but now I have to determine them first. I choose to do it with the
help of the Wang-Landau method.

First I initial all weightsg(E) = 0 and the shape parameterh = 1. Then I perform the updates in
alternating order changing the weights of the visited temperature after every cycle byg(T ) → g(T ) + h.
If the histogram of the visited temperaturesH(T ) becomes sufficiently flat I change the shape parameter
by h = h/2. Sufficiently flat means the deviation from the mean is at most20% of the mean. Continue
until h ≈ 0. Because this new method performs a random walk in temperature space I call this enriched
version of simulated tempering the random tempering method.

Parallel Tempering

This method [7] is very similar to simulated tempering but works withn copies of the system instead of
one. Every system is simulated at a different temperatures and I perform two kind of updates:

• Normal Metropolis update:

P (E → E′) = min

(

1,
e−βE′

e−βE

)

• Configuration swap of 2 systems:

P (µ ↔ ν) = min

(

1,
e−βµEν−βνEµ

e−βµEµ−βνEν

)

There are no weights to determine. This method has a natural implementation on parallel computers.

Protein Simulations

The methods described above are used in many different fieldsof computer simulation and also in protein
simulation. What makes protein folding so complicated is the rough energy landscape caused by the
interactions of the great number of atoms. One simplified description of the interactions is given by the
following force field.

Force Field

The energy function [8] I used is measured in kcal/mol:

Etot = ELJ + Eel + Ehb + Etors

where

• Lennard-Jones termELJ =
∑

j>i

(

Aij

r12
ij

− Bij

r6
ij

)
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• Electrostatic termEel =
∑

i,j
332qiqj

ǫrij

• Hydrogen-bond termEhb =
∑

j>i

(

Cij

r12
ij

− Dij

r10
ij

)

• Torsion termEtors =
∑

l Ul(1 ± cos(nlχl))

The missing constants are taken from [8]. The Lennard-Jonesterm takes the radii of the atoms and
repulsion of the electron clouds of the atoms into account, the electrostatic term gives the interactions
between charged particles, the Hydrogen-bond term describes the energy caused by the polarization of
the atom and the torsion term stands for the energy stored in the torsion of the bonds.

Objects of Studies

It is not possible to understand all aspects of folding in oneuniversal protein. I study three different small
peptides.

• Met-enkephalin

Tyr − Gly − Gly − Phe− Met

This is the work horse of algorithms tested in the field of protein folding.

• Alanine 10
Ala − Ala − Ala − Ala − Ala − Ala − Ala − Ala − Ala − Ala

A littler bigger than Met-enkephalin, but still with simpleproperties.

• Trp-Cage

Asn− Leu− Tyr − Ile − Gln− Trp− Leu− Lys− Asp− Gly−

Gly − Pro− Ser− Ser− Gly − Arg − Pro− Pro− Pro− Ser

This is a much bigger molecule with nontrivial folding behavior and a characteristic groundstate.

Results

Numerical Comparison of Multicanonical Simulation and Wang-Landau Sampling

As it is the first time that the Wang-Landau algorithm was usedtogether with this force field I first com-
pare the density of states calculated with Wang-Landau withresults from a multicanonical simulation.
Good analogy can be seen in Figure 1. The graphs are normalized on the energy bin next to the highest
energy. For technical reasons the last bin of the multicanonical simulation is filled with all higher ener-
gies. Out of this density the meanvalue of the energy was calculated (see Fig. 2) and showed good results
at temperatures above room temperature and small deviationat lower temperatures.

The final simulation runs always had a length ofmMuCa = 100.000 sweeps. The bin size was 1 kcal/mol.
The interesting energy region was[−12 . . . 60] kcal/mol for Alanine 10 and[−12 . . . 20] kcal/mol for
Met-enkephalin. For weight determination in multicanonical simulation I used 20 recursion run with
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Met-enkephalin
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Fig. 1: Comparison of the density of states with multicanonic simulation and Wang Landau sampling for
Met-enkephalin and Alanine 10. Good analogy showed up in both cases.
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Fig. 2: Comparison of the meanvalue of the energies with multicanonical simulation and Wang Landau
sampling for Met-enkephalin and Alanine 10. Good analogy can be seen for room temperature or higher
and small deviation for the lower energy area.

nMuCa = 5.000 sweeps and 10 runs withnWL = 10.000 sweeps for Wang-Landau sampling. Depend-
ing on the start configuration the weight finding with Wang-Landau was around 10% faster than the
multicanonical recursion.

I also tried using the Wang-Landau algorithm for Trp-cage, but it fails. The problem is the big size
of the configuration space. The interesting energy range is[−170 . . . 50] kcal/mol. This caused also a
big difference in the order of magnitude of the density of states. The system gets stuck in some state
around the ground state and has no chance to move to higher energies again so the meanvalue for small
temperatures becomes too small (see Fig. 4). Multicanonical simulations have the same problems here.
For big peptides there are too many configurations with the same energy. It is not possible to visit all in
finite time. Configuration with similar energy do not have large overlap, which means a big distance in
configuration space, so I need to try other methods.
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Met-enkephalin
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Fig. 3: Comparison of multicanonical simulation and randomtempering for Met-enkephalin. The sam-
pled temperature point of random tempering fit together withthe curve of the multicanonical simulation.

Comparison of Random Tempering and Multicanonical Simulation

Multicanonical simulations and Wang-Landau sampling giveus information about all temperatures in
one simulation. In most cases I am just interested in values at some fixed values of temperature. As in
the last section, I first want to test if random tempering works correctly for Met-enkephalin. I choose ten
temperatures between 100 K and 1000 K. The temperatures are equidistant on the inverse temperature
scale because the distribution depends onβ notT .

The determination of the weights for random tempering takesaround 1.000.000 sweeps in 15 runs to
get a sufficiently flat distribution in temperature. It also takes the same number of sweeps to get a flat
distribution in the final run with fixed weights. In comparison to multicanonical simulation this is a long
time but the results look similar. Results for Met-enkephalin are shown in Fig. 3.

For Trp-cage the distribution is not flat even after the 10th run of determining the weights. In the final
run the distribution is not flat either and causes some problem in low energy regions (see Fig. 4).

Comparison with Parallel Tempering

As even random tempering has problem with low energy regions, I test parallel tempering for Trp-cage
on the supercomputer JUMP in the Research Center Jülich. One time 16 CPUs× 10 h with 1.100.000
sweeps and the other time 10 CPUs× 10 h with 1.000.000 sweeps. The results are consistent even with
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Trp-cage
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Fig. 4: Comparison of several methods for Trp-cage. Random tempering and Wang-Landau sampling
have problem in the low energy regions. High temperature points fit together.

different temperature points (Fig. 4). They have small error bars and are repeatable.

Conclusion

All methods I have tested except parallel tempering have produced problems with low temperatures and
therefore with the low energy region of big peptides. The statistical results are not repeatable with other
starting conditions. This is caused by the size of the configuration space and the large energy barriers. For
the smallest tested peptides all methods work well. Maybe itis possible to get better results in a longer
simulation run. But in comparison to parallel tempering theefficency is bad.

Outlook

Because of the very long simulation times it is necessary to parallelize the broad histogram methods like
multicanonical simulation and Wang-Landau sampling. Thiswould help to get the same information in
shorter time, so that I can have more information about the system in the same time. Till now I cannot
even think about simulating a real protein on a supercomputer.

Also I have to think about a way to overcome those configuration barriers. Maybe the choice of the
interestering regions in the configuration space have to be done first. Also getting a flat histogram in
energy space is not always the best, a flat distribution in overlap to the ground state, which must be
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experimental known, may be better.
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