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We compare the efficiency of two prominent techniques for simulation of complex sys-
tems: parallel tempering and Wang–Landau sampling. We show that both methods are
of comparable efficiency but are optimized for different platforms. Parallel tempering
should be chosen on multi-processor system while Wang–Landau sampling is easier to
implement on a single-processor computer.
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1. Introduction

One of the grand challenges in computational science is the study of proteins and

their folding process by way of computer experiments. With regular methods such as

Monte Carlo in a canonical ensemble2 the molecule gets easily trapped in one of the

many local minima in the rough energy landscape of a protein. Since the probability

for escaping a local minimum in the canonical ensemble is given by exp(−∆E/kBT )

(with kB the Boltzmann constant), the probability to escape a local minimum over

an energy barrier of heights ∆E becomes vanishing small with decreasing temper-

ature T . Various non-traditional Monte Carlo or molecular dynamics techniques

have been designed to overcome this multiple minima problem (for a review, see,

for instance, Ref. 1). Here we compare two prominent techniques. The first one is

parallel tempering3,4 where the molecule can escape local minima through a random

walk in temperature space. On the other hand, in generalized ensemble5 simulations

artificial weights are introduced that do not depend on temperature. A common
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variant of this approach is the Wang–Landau algorithm6 which allows one to esti-

mate the density of states and — in combination with a multicanonical simulation7

— to determine thermal averages of physical quantities. As both techniques have

become methods of choice in protein simulations it is worthwhile to compare their

numerical efficiency. For this purpose, we have simulated the pentapeptide Met-

enkephalin. Because of its small size this molecule has become an often used model

in protein science for evaluating numerical techniques. We compare both methods

by measuring (keeping the CPU time constant) in each case the number of inde-

pendent visits of the known ground state of the molecule. Our results show that for

this molecule both approaches are of comparable efficiency but at least two orders

of magnitude faster than regular canonical simulations.

2. Methods

2.1. Force field

A prerequisite for every protein simulation is choice of a model that describes

the protein and allows to calculate its energy as a function of its specific

configuration. In the present paper we have chosen the ECEPP/3 force field8

as implemented in the open source program package SMMP9 (available from

www.phy.mtu.edu/biophys/smmp.htm). Here, the energy of a protein:

Etot = ELJ + Eel + Ehb + Etors

is the sum of the 12–6 Lennard–Jones term ELJ :

ELJ =
∑

(i,j)

(

Aij

r12
ij

− Bij

r6
ij

)

a ,

the electrostatic energy Eel as given by:

Eel = 332
∑

(i,j)

qiqj

εrij
,

a term describing hydrogen-bonds:

Ehb =
∑

(i,j)

(

Cij

r12
ij

− Dij

r10
ij

)

,

and finally, the torsion energy Etors as given by:

Etors =
∑

l

Ul(1 ± cos(nlχl)) .

In this formula rij stands for the distance between the atoms i and j and qi, qj

are the associated charges. The lth torsion is named by χl and ε is the dielectric

constant of the environment. The constants Aij , Bij , Cij and Dij are parameters

of the empirical potential. The energy E is measured in kcal/mol and r in Å.
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2.2. Parallel tempering

Detailed energy functions such as the one described in the last sub-section are a mix-

ture of attractive and repulsive interactions. The resulting rough energy landscape

leads to extremely slow thermalization of protein simulations at low temperatures.

One way to overcome this difficulty is parallel tempering3 (also known as replica

exchange method or Multiple Markov chains), a technique that was first applied to

protein studies in Ref. 4. In parallel tempering one considers an artificial system

built up of N non-interacting replicas of the molecule, each at a different temper-

ature Ti. In addition to standard Monte Carlo or molecular dynamics moves that

act only on one replica (i.e., the molecule at a fixed temperature), an exchange of

conformations between two copies i and j = i + 1 is allowed with probability

P (Ci → Cj) = min(1, exp(−βiE(Cj) − βjE(Ci) + βiE(Ci) + βjE(Cj))) . (1)

The exchange of conformations will at low temperatures lead to a faster convergence

of the Markov chain than is observed in regular canonical simulations with only

local moves. This is because the resulting random walk in temperatures allows

the configurations to move out of local minima and cross energy barriers. The

expectation value of a quantity Q at temperature T is calculated as:

〈Q〉(T ) =

∑

i δTi,T Qi
∑

i δTi,T
.

Here the sum goes over all measurements of Q in the simulation and δ is the

Kronecker symbol. Expectation values at interpolating temperatures are calculated

by re-weighting.10

2.3. Wang Landau-Algorithm

Originally, the Wang–Landau-Algorithm has been designed to estimate the density

of states Ω(E(C)) by performing a random walk in energy space. At start, each en-

ergy is assigned the same weight W (E) = 1 and one perform a extended Metropolis

update with the transition probability

P (C → C ′) = min

(

1,
W (E(C ′))

W (E(C))

)

.

After visiting a configuration with energy E, its weight is divided by a shape factor

f > 1 (we start with f = e):

W (E) → W (E)

f
.

This procedure is repeated for a certain number of sweeps, in our case 100,000

sweeps. Afterwards, the shape factor f is replaced by f ′ =
√

f and the simulations.

We increase the number of sweeps in each iteration by 10%. Successively, the shape

factor is lowered till f − 1 ≤ ε with ε a pre-chosen tiny number. At this point, the

density of states Ω(E) can be estimated by 1/W (E). Notice that this algorithm does
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not fulfill detailed balance as the weights are changing during the simulation. For

convenience, the density of states is often determined only within a given interval

corresponding to the relevant temperature range of the system. For Met-enkephalin

we have chosen −20 kcal/mol ≤ E ≤ 20 kcal/mol. Higher energies are suppressed

with a Boltzmann factor of temperature T = 1000 K. Because in the Wang–Landau

algorithm the estimate of the density of states has an uncontrollable error (as the

technique does not realizes a Markov chain), we do a final run with high statistics

and fixed weights. Under these conditions, the Wang–Landau sampling becomes a

multicanonical simulation.7 Expectation values and errors of physical quantities can

be calculated over a range of temperatures through re-weighting as the distribution

of the energies is now given by:

P (E) = W (E)Ω(E) ≈ const .

The expectation value at a temperature T is given by:

〈Q〉(T ) =

∑

i Q(Ci)W (E(Ci))
−1e−E(Ci)/kBT

∑

i W (E(Ci))−1e−E(Ci)/kBT

Here, the sum goes over all measurements of configurations C.

3. Results

We have compared the two algorithms by simulating the pentapeptide Met-

enkephalin (Tye–Gly–Gly–Phe–Met) which in the last years has become an often

used test case in protein folding simulations. For parallel tempering, we choose ten

temperatures between 100 K and 1000 K that are equidistant in 1/T . We find that

each of the 10 energy histograms overlaps with its neighbors allowing therefore

exchange between neighboring temperatures with sufficient high probability. As a

consequence, the parallel tempering protocol leads to a random walk of the replicas

through all ten temperatures. We have made 100000 sweeps for thermalisation and

1 000 000 sweeps for measurement per replica. Figure 1 demonstrates that within

the first 10 000 sweeps the lowest temperature (T = 100 K) has been visited by

every replica at least once. The complementing plot is shown in Fig. 2. This plot

follows “replica 4” over the first 10 000 sweeps and shows that each of the ten tem-

peratures has been visited at least once. The total 10 × 1 100 000 sweeps require

4.25 h on 10 CPUs (Power PC+ 1400 MHz of the supercomputer JUMP at FZ

Jülich).

For determining the weights of the final run we have made 25 iterations of Wang–

Landau sampling. We extend the length of a run by a factor 1.1 in each iteration

starting with 100000 sweeps in the first iteration and ending with 1 080 000 sweeps

in the last. The known ground state was first found in the 6th iteration. Weights

are determined for energy bins of size 1 kcal/mol. After the 25th recursion run (at

which ε = 2.98·10−8) we continued with a multicanonical run of 10 0000000 sweeps.

This run lead indeed to a sufficiently flat histogram, indicating that the simulation

now performs indeed a random run in energy space (see Fig. 3). For the recursion
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Fig. 1. Replicas visiting the temperature T = 100 K in first 10 000 sweeps.
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Fig. 2. The walk of replica “4” through temperature space for the first 10 000 sweeps.

15.69 h on a Intel P4 with 3 GHz was needed, and the final simulation required

12.82 h.

We first compare the mean values of energy and the specific heat defined by:

〈cV 〉(T ) = β2 〈E2〉(T ) − 〈E〉2(T )

N
,
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Fig. 3. Time series of energies for the final Wang-Landau simulation. Shown are only the first
10 000 sweeps. Note the random walk through energy covering the low energy region but visiting

also from time to time the high energy phase.

Table 1. The mean values of energy and the heat capacity shown good
agreement with their error bars have overlapping.

Parallel tempering Wang–Landau sampling

T 〈E〉PT 〈cV 〉PT 〈E〉WL 〈cV 〉WL

[K] [kcal/mol] [1] [kcal/mol] [1]

100 −9.390 (61) 4.76 (17) −9.414 (86) 4.66 (18)
111 −8.861 (70) 4.87 (11) −8.890 (96) 4.88 (16)
125 −8.196 (66) 4.80 (12) −8.209 (95) 4.88 (16)
143 −7.359 (47) 4.74 (13) −7.344 (85) 4.78 (15)
167 −6.242 (36) 4.86 (12) −6.202 (73) 4.84 (10)
200 −4.616 (38) 5.17 (8) −4.567 (59) 5.16 (10)
250 −1.900 (49) 5.79 (6) −1.854 (48) 5.76 (8)
333 3.043 (48) 5.91 (5) 3.082 (41) 5.86 (5)
500 10.699 (18) 3.47 (2) 10.728 (26) 3.49 (2)

1000 22.433 (126) 1.85 (6) 21.395 (83) 1.81 (2)

where N is the number of amino acid, in our case N = 5. The calculated values are

similar and have the expected monotonic behavior (see Table 1). The error bars are

estimated with the help of the jackknife technique.11,12 Hence, both methods lead to

comparable results and therefore are likely not prone to systematic errors. In fact,

the values in Table 1 agree within the errorbars with that of previous investigations

using different techniques.
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Table 2. The number of tunnel events for every replica in the paral-

lel tempering simulation and the total number of tunnel events for the
parallel tempering simulation and Wang–Landau sampling. A tunnel
event is a evolution of the system from energy E = −10 kcal/mol to
energy E = 18 kcal/mol and back.

Tunnel events of every replica of parallel tempering
Replica 1 2 3 4 5 6 7 8 9 10

Tunnel events 9 14 9 15 16 11 13 13 14 11

Total tunnel events of parallel tempering 125
Total tunnel events of Wang–Landau sampling 100

The efficiency of algorithms in protein simulations is given by their ability to

sample independent low-energy configurations. A necessary condition is the gen-

eration of new configurations. Hence, the probability to accept a proposed new

configuration should not be vanishing small. In our case, the acceptance rate was

for both algorithms sufficiently large and of same order (see Table 3). However, a

more distinguishing quantity to compare the efficiency of the two algorithm is the

tunneling time. This quantity measures the time needed for the system for a com-

plete walk through energy space from a low-energy configuration (defined by us as

one with an energy E ≤ −10.0 kcal/mol) into the high-energy region (energies with

E ≥ 18 kcal/mol) and back. Obviously, two configurations that are separated by

such a tunnel event are independent from each other as the visit in the high-energy

region ensures that they are no longer correlated. Hence, the number of tunneling

events is a lower bound for the number of truely independent low-energy config-

urations that have been sampled in a simulation. Values for the two methods are

listed in Table 2.

We find little difference in the tunneling times between Parallel tempering (125

Tunneling events) and the Wang–Landau sampling (100 Tunneling events). Hence,

our data indicate that both techniques have a comparable efficiency. For compari-

son we have performed an additional simulation of Met-enkephalin in a canonical

ensemble corresponding to a temperature T = 100 K. The lowest energy found in

a simulation of 11 000000 sweeps was −8.97 kcal/mol, so the mean value was too

high and the system never explored the lower energy regions of the configuration

space. Hence, only one independent ground state structure was found in this canon-

ical simulation. In this sense, regular canonical simulations are at least two orders

of magnitude slower than either parallel tempering or Wang–Landau Sampling.

Obviously, the latter two are preferable in protein simulations. However, which of

the two algorithms one should choose for a certain application will depend on the

specific application. If a parallel computer is available, it may be preferable to use

parallel tempering as this technique will lead to faster results. On the other hand,

Wang–Landau sampling is easier to implement on a single-processor machine and

here preferable.
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Table 3. The acceptance rate at every temperature in parallel tempering simulation and the

average acceptance rate of the parallel tempering simulation and Wang–Landau sampling. A
update counted as accepted if the energy has changed.

Acceptance rate at every temperature of parallel tempering
T [K] 100 111 125 143 167 200 250 333 500 1000
acceptance rate 95.2% 98.1% 98.3% 98.6% 98.9% 99.1% 99.4% 99.7% 99.8% 99.9%

Average acceptance rate of parallel tempering 98.7%
Average acceptance rate of Wang–Landau sampling 96.8%

4. Conclusions

We have compared two prominent algorithms that are often used in protein studies.

Both Parallel tempering and Wang–Landau sampling allow to obtain information

over a large temperature range from a single simulation. Both sample independent

low-energy configurations with comparable efficiency but are at least two orders of

magnitude faster than a canonical simulation at a low temperature of T = 100 K.

Hence, choice between both algorithms will depend on the equipment available and

personal preferences of the researcher. As both techniques are numerically different

they allow one also to cross-check simulational results in protein studies.
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