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Abstract

The studies presented in this thesis are deeply biologically motivated. The main

request was to understand a bit more about the statistical mechanics of pro-

teins and protein aggregation, which have been a research field for years. We

have used a very simple hydrophobic-polar aggregation model on a mesoscopic

level, where a protein is represented by a chain of monomers of the hydro-

phobic A type or the polar (hydrophilic) B type. We have performed Monte

Carlo simulations for up to four chains with different sequences of monomers,

hetero- and homopolymers. Even in this simple model the energy landscape is

“rough”, thus the applied methods were mostly generalized ensemble methods.

These sophisticated methods like multicanonical sampling, parallel tempering

and multicanonical replica exchange provided more reliable and accurate re-

sults than common canonical Monte Carlo simulations. Despite that the inter-

chain interaction was modeled by a weak Lennard-Jones like potential, we found

a first-order like transition of the aggregation. In a microcanonical analysis we

also found a negative microcanonical specific heat, which is a little bit “exotic”.

Zusammenfassung

Proteine spielen in der Natur und im menschlichen Körper eine extrem wichtige

Rolle. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Pro-

teinen und deren Aggregation.

Es wurde ein sehr stark vereinfachtes Modell, das so genannte AB Modell,

verwendet. In diesem Modell sind Proteine nur Ketten von Monomeren des

hydrophoben A-Typs oder des polaren B-Typs. Bis zu vier dieser Ketten wur-

den mit verschiedensten Monte-Carlo-Methoden untersucht. Die kanonischen

Monte-Carlo-Simulationen lieferten keine zufriedenstellenden Ergebnisse. Die

Ursache dafür ist die sehr stark zerklüftete Energielandschaft. Um verlässlichere

Daten zu erhalten, wurden erweiterte Ensemble-Methoden wie multikanonische

Simulationen, Parallel Tempering und multikanonisches Replica Exchange ver-

wendet. Trotz der eher schwachen Lennard-Jones-artigen Wechselwirkung zwis-

chen den verschiedenen Ketten wurde ein Phasenübergang ähnlich dem erster

Ordnung beobachtet. Eine mikrokanonische Analyse dieses Phasenübergangs

zeigte den eher seltenen Effekt einer negativen mikrokanonischen spezifischen

Wärmekapazität.
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Overview

This thesis deals with the aggregation of protein-like heteropolymers within the

frame of a mesoscopic, coarse-grained model.

The first chapter explains the motivation for choosing this problem. Some

basic ideas about proteins and their folding will be illuminated in Sect. 1.1. Also

two different simulation approaches, an all-atom approach (see Sect. 1.4.1) and

the coarse-grained approach (see Sect. 1.4.2) used here, will be introduced.

Following, the second chapter explains the employed aggregation model (see

Sect. 2.1.1) and the applied methods. Basically, Markov chain Monte Carlo sim-

ulations, which will be briefly reviewed in Sect. 2.2.3, were used, but because of

the “rough” energy landscape, more sophisticated generalized ensemble meth-

ods like multicanonical simulations (see Sect. 2.4.3), parallel tempering (see

Sect. 2.4.5) and a combination of both, the multicanonical replica exchange (see

Sect. 2.4.7), were applied as well.

The third chapter discusses the conventions used in the simulations. Spe-

cial emphasis has been put on the distance measurement in Sect. 3.3 and the

related problem of the periodic box and the, therefore, necessary changes in the

thermodynamic quantities.

Then the results will be presented in detail. In the first part of the fourth

chapter some known results will be verified (see Sect. 4.1.1). The second part

deals with the single monomer aggregation, which is comparable to solvents on

a very basic level (see Sect. 4.2) and polymers in solvents. After that, the aggre-

gation behavior of two and more polymer chains will be described in Sect. 4.3.

It turns out that the transition from the fragmented to the aggregated phase

is first-order like. Also a microcanonical interpretation of the aggregation (see

Sect. 4.3.5) will be given which reveals a negative microcanonical specific heat

and led to the discovery of a second, weaker transition. This second transition

would have been easily overlooked in canonical calculations.

Last but not least the main facts will be compiled in the summary chapter

where the most significant information will be presented in a short form.
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Chapter 1

Introduction

This chapter gives a short summary of proteins and their functions as motivation

for this thesis. Also the two possible variants of modeling, an all-atom model

and a mesoscopic coarse-grained model, are briefly reviewed.

1.1 Proteins

From the technical point of view proteins are just “an organic compound that

consists of amino acids joined by peptide bonds” [1]. The interesting thing is

that most of the proteins fold into a unique three-dimensional structure which is

directly correlated to its biological function in the cells (see example in Fig. 1.1).

The functions of proteins cover very different areas. Some of them are catalyzing

biochemical reactions, transporting molecules and also fighting infections. That

is why the study of proteins and their folding is so interesting and important.

1.2 The Protein Folding Problem

Following this diversity of functions, another question directly appears: If one

has a given sequence (primary structure) to which unique structure (secondary

and tertiary structure) will it fold? Or in other words, if we have a given

Figure 1.1: Secondary structure of the pro-

tein PDB:153L (Goose lysozyme) [2] which

has 185 amino acids.

3
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AB

B

A

⇒

Figure 1.2: Sketch of two proteins coupling

by rigid-body docking [3], i.e. without chang-

ing bond and torsion angles.

sequence which function in the cell will it have? This is the so called direct

protein folding problem.

There is another aspect to mention: In some cases the protein will not fold

to its unique structure but to some other one. Such mis-folding events will

cause diseases like cancer and a deeper understanding of those incidents would

obviously be highly desirable.

But from the pharmaceutic point of view the search of the primary structure

for a given secondary structure is much more interesting for developing new

drugs. This inverse protein folding problem needs an even deeper understanding

of the folding mechanics.

1.3 Protein Docking

The idea from above has to be generalized to more than one protein, because

some proteins will achieve their function only in a compound of proteins. Before

having such a complex the single proteins have to dock (see Fig. 1.2) and this

process is not totally understood. There are two kinds of docking: The rigid-

body docking where the torsion and bond angles stay constant and the flexible

docking where these can change.

1.4 Models for Proteins

1.4.1 All-Atom Models

A common way to model a protein is to take all single atoms of the protein and

all different interaction forces into account. Different models are circulating, one

of them is the ECEPP/3 potential [4] which comprises the four main interactions

Etot = ELJ + Eel + Ehb + Etors ,

with:

• Lennard-Jones potential ELJ =
∑

j>i

(
Aij

r12
ij

− Bij

r6
ij

)
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• Electrostatic potential Eel =
∑

i,j
332qiqj

ǫrij

• Hydrogen-bond energy Ehb =
∑

j>i

(
Cij

r12
ij

− Dij

r10
ij

)

• Torsion energy Etors =
∑

l Ul(1± cos(nlχl))

This potential is a mixture of attractive and repulsive interactions that leads

to a multiple minima problem. As the number of terms of this potential scales

with N2, where N is the number of atoms, even for small proteins with around

a hundred atoms computer simulation are demanding.

The potential comprises empirical constants (e.g. Aij , Bij), which char-

acterizes the force field. These constants are a priori unknown and have to

be determined out of quantum-chemical calculations and experimental mea-

surements, which have a certain measurement uncertainty and partly unknown

dependences. Because of the complicated form of the potential, small changes

in the empirical constant cause great changes in the result of the simulation. To

read off of a “basic” physical law is very hard, if not impossible.

In previous work [5, 6] we have done several studies with the ECEPP/3

potential for a small protein with five amino acids and showed that the re-

sults produced by different simulation methods (see Sect.2.4) are consistent. In

contrast, we used a coarse-grained model for the simulations of this work.

1.4.2 Coarse-Grained Models

To understand the basic physics, we used a coarse-graining approach which

models the proteins on a mesoscopic scale. Several models on lattices were used

in the last decades [7, 8]. Due to the evolution of the computer power [9] off-

lattice approaches also became possible. We used the very simple AB model

[10, 11], in which every amino acid is seen as a monomer and not every attribute

is taken into account. The property to remain is hydrophobicity and polarity;

a monomer can be hydrophobic or polar. The bond lengths are fixed and set to

unity, so this can be seen as the length scale of this mesoscopic approach. More

technical details will be discussed in the next chapter.
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Chapter 2

Models & Methods

This chapter discusses the used model and methods. Starting with an introduc-

tion to the AB model, we then give an overview about the methods, which are

in general Monte Carlo methods.

2.1 Models

In this section the AB model will be described in detail and our extension for

multiple chain interactions will be introduced.

2.1.1 AB Model

The AB model [10, 11] is a coarse-grained heteropolymer model, where coarse-

graining means modeling at mesoscopic length scales. The model provides two

kinds of monomers, the hydrophobic A and polar B type. The energy function

has only two terms:

Etotal = Ebend + ELJ , (2.1)

the bending energy Ebend and a Lennard-Jones interaction energy ELJ. For the

latter, the heteropolymer character comes into play, because the Lennard-Jones

interaction differs for the different kinds of monomers. A sketch of a polymer

chain in the AB model can been seen in Fig. 2.1. The coordinate vector of

the kth monomer is called ~rk and the distance between the neighboring single

monomers of the chain is fixed and chosen to be in good relation to the distances

in the Lennard-Jones energy. Due to this fact we set the bond lengths to unity:

|~rk − ~rk+1| = 1 ∀ 0 < k < N , (2.2)

where N is the number of monomers in the chain. Originally, the model

was designed for 2D [10, 11] but can naturally be expanded into 3D [12].

7
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ϑk

rij
B

B A Figure 2.1: A polymer in the AB model can

be seen as a chain of two different types of

monomers, where the neighbors have a fixed

distance, we used distance 1. The bonding

angles at the (k + 1)th atom are denoted by

ϑk and the distance between the ith and jth

atom is called rij .

(a) (b)

Bending Energy

ϑk

E
b
e
n
d

0 π/2 π

0.5

0.4

0.3

0.2

0.1

0

Lennard-Jones Energy

rik
E

L
J

A-B
B-B
A-A

21.81.61.41.210.8

2

1

0

-1

-2

Figure 2.2: (a) The bending energy for a chain with three monomers, e.g. one bonding

angle. This part of the total energy has its minimum at angles of 0 and maximums at −π and

π. (b) The Lennard-Jones energy for the different kinds of interactions, the A-A interaction

has a minimum at rAA
min = 6

√
2 ≈ 1.122 and the B-B interaction at rBB

min = 6
√

4 ≈ 1.26 but the

A-B potential has no minimum.

The first term in the energy function is the bending energy:

Ebend =
1

4

N−2∑

k=1

(1− cosϑk) , (2.3)

where ϑk is the bending angle at the (k + 1)th monomer, defined by:

cosϑk =
(~rk − ~rk+1) · (~rk+1 − ~rk+2)

|~rk − ~rk+1| · |~rk+1 − ~rk+2|
(2.2)
= (~rk − ~rk+1) · (~rk+1 − ~rk+2) , (2.4)

that is why there are (N − 2) bonding angles in a chain with N monomers.

Obviously ϑk is in the interval [0, π). The highest bending energy of 1/2 is

taken at ϑk = π (see Fig. 2.2(a) ).

In contrast to the bending energy, the Lennard-Jones energy depends on the

types of interacting monomers:

ELJ = 4

N−2∑

i=1

N∑

j=i+2

(
1

r12
ij

− C(σi, σj)

r6
ij

)
, (2.5)

where

C(σi, σj) =





+1 : σi = σj = A ,

+1/2 : σi = σj = B ,

−1/2 : σi 6= σj

(2.6)
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rij

Figure 2.3: Scheme of the interaction for

multiple chains. The Lennard-Jones interac-

tion is also assumed for monomers in different

chains.

and the distances between the ith and jth monomer is:

rij = |~ri − ~rj |. (2.7)

There is no energetic coupling between adjacent monomers in the Lennard-Jones

potential due to the fixed bond lengths (see Eqn. (2.2) ). The attractive A-A and

B-B interactions have a minimum at rAA
min = 6

√
2 and rBB

min = 6
√

4. Respectively

the A-B interaction has no minimum and decreases with the distance generating

a repulsive force. The minimum of the A-A interaction at EAA
min = −1 lies

much deeper than the minimum of the B-B interaction at EBB
min = −1/4 (see

Fig. 2.2(b) ). That is why the polymer chain in ground-state prefers to form

A-A rather than B-B contacts. In comparison to nature, the A type can be seen

as hydrophobic monomers and the B type as hydrophilic or polar monomers.

2.1.2 Interaction Model

The model described in Sect. 2.1.1 is a single-chain model which we expanded

by extending the Lennard-Jones interaction to monomers in different chains. So

the total energy for a system of chains is thus given by:

Esystem =

K∑

i=1

Etotal
i + Einteract , (2.8)

where Etotal
i is the energy of the ith chain (see Eqn. (2.1) ) out of a system of

K chains.

The interaction energy can be calculated by:

Einteract =

K−1∑

i=1

K∑

j=i+1

Einteract
ij , (2.9)

where Ei,j
interact is the interaction energy between the ith and jth polymer:

Einteract
ij = 4

Ni∑

k=1

Nj∑

l=1

(
1

r12
kl

− C(σk, σl)

r6
kl

)
, (2.10)

where C(σi, σj) is defined in Eqn. (2.6). Ni is the number of monomers in

the ith chain respectively Nj in the jth chain (see Fig. 2.3). As can easily be

seen, this is just one possible expansion of the model but a natural one. One
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Figure 2.4: System in a box with periodi-

cal boundary conditions. Of all possible dis-

tances one defines the shortest distance to be

the measured distance.

could argue that this is not the best choice, because inner- and outer polymer

interactions often differ in experimental analysis. Also the bending energy alone

cannot compensate this difference. But in order to keep the model as simple

as possible and free of additional interaction parameters, this expansion is most

suitable.

2.1.3 Boundary Conditions

Along with the simulation of multiple chains, a boundary condition has to be

chosen. The force caused by the potential described in Sect. 2.1.1 and Sect. 2.1.2

is very short-ranged, so it can happen that the chains never interact and each

one folds in its single chain ground state, which is also some metastable system

state. That is why the introduction of a box is useful to study aggregation.

For single chain simulation this is not necessary, one can also take the center of

mass as point of origin.

For the examined system, two kinds of boundary conditions are possible,

periodical and hard walls. To avoid effects of hard walls which will obviously

affect the folding process in the edges of the box, periodical boundary conditions

are used. Along with this choice of boundary conditions one also has to define

a new measurement for the distances between two monomers as it is required

for the calculation of the energy and nearly all other quantities (see Eqn. (2.7) ).

Out of all possible distances one defines the shortest one to be the distance to

measure (see Fig. 2.4). This is called minimum image convention [13]. The

periodic distance between two points ~p, ~q can be written as:

dper (~p, ~q) = min
all boxes

|~p− ~q| . (2.11)

The box size has to be chosen carefully. A too large box size means sampling

of single chain properties but too small sizes make you lose the stretched con-

figurations and the fragmented phase. A detailed study of the dependence on
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the box size can be found in Sect. 4.3.3.

From now on all simulations which take place in a periodic box will use the

periodic distance measurement. For a system of one chain and a box that is large

enough (see Sect. 4.1.1) the periodic box will not change the thermodynamics

because of the short-ranged interaction (Eqn. (2.5) ).

2.2 Monte Carlo Methods

Monte Carlo simulations were performed to obtain the thermodynamic quanti-

ties of the system. The basic ideas and physical applications of the Monte Carlo

method are shortly explained in the following section. A good overview can also

be found in standard literature [14, 15].

2.2.1 Basics of Monte Carlo

In connection to the words “Monte Carlo” [16] one always thinks about random-

ness which comes into play by drawing random numbers inside the simulation.

These numbers are generated by special algorithms, so called random number

generators [17, 18]. In the following section the drawing of random numbers is

hidden in the word probability. If something is done with a certain probability,

we perform this step only in certain amount of cases. Whether something is done

or not is decided by the drawn random number. Random numbers are of the

interval [0, 1) and probabilities are naturally of the interval [0, 1]. Further on,

if the random number is smaller than the probability the step is executed, else

it is not. When performing this decision several times the result is distributed

according to the given probabilities.

One of the first applications was the Monte Carlo integration. For example

the function

0 ≤ f(x) ≤ 1 (2.12)

should be integrated over the x range [0, 1]. The integral

I =

∫ 1

0

dx f(x) (2.13)

is the value to calculate. The scheme of the Monte Carlo integration can be

seen in Table 2.1. The main point why this works is because:

p =
Nhits

Ntotal
=

I

1 · 1 . (2.14)

The probability p to draw a random point in the area under the function is

equal to the ratio of integral I to the area of the whole region ([0, 1] × [0, 1]).

And this probability p can be measured as the ratio of the number of hits Nhits

to the total number Ntotal of drawn points. But now back to physics.
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1 H=0

2 for ( i = 1 to N )

3 x=random()

4 y=random()

5 if ( y < f(x) )

6 H=H+1

7 end for

8 I= H/N

9 print I

Table 2.1: A simple Monte Carlo program

to integrate a function f(x) (0 ≤ f(x) ≤ 1)

over the interval [0, 1]. random() gives a ran-

dom number, which is uniformly distributed

in the interval [0, 1). N gives the number of

iteration steps.

2.2.2 Random Statistical Physics

As known from statistical physics [19], the expectation value of a quantity is

given as:

〈O〉(T ) =

∑
µ∈C Oµe−Eµ/kBT

∑
µ∈C e−Eµ/kBT

, (2.15)

where the sum goes over all possible configurations µ of the system. Now the

basic idea of Monte Carlo is to take a random subset R instead of the whole

configuration space C. And using the following mean value as estimator for the

expectation value (see Eqn. (2.15) ):

Ô(T ) =

∑
µ∈R Oµe−Eµ/kBT

∑
µ∈R e−Eµ/kBT

. (2.16)

This random subset has to be chosen carefully, so that all important states are

sampled. This is called importance sampling [15].

2.2.3 Markov Chain Process

The usual way to produce a set of important states is a Markov chain process

µ
P (µ→ν)−→ ν

P (ν→λ)−→ λ . (2.17)

Starting from a configuration µ one goes to another configuration ν with a cer-

tain probability P (µ→ ν) and so on, that is why it is called chain process. The

subset produced by this procedure is distributed with pµ which will be defined in

Eqn. (2.22). This distribution obviously depends on the transition probabilities

P (µ→ ν) which have to fulfill three conditions:

• Ergodicity = every transition should at least be possible in NS steeps

P (ν → µ) = P (ν → λ1) ·
NS∏

i=1

P (λi → λi+1) · P (λN , µ) , (2.18)



2.3. UPDATES 13

• Normalization

0 ≤ P (ν → µ) ≤ 1 (2.19)

and ∑

µ

P (ν → µ) = 1 , (2.20)

• Balance = the probability pµ of a configuration µ in this random subset

is given by:

pµ =
∑

ν

pνP (ν → µ) . (2.21)

To avoid so called random cycles [15], which are subsets which do not consist

of all regions of the configuration space, the last condition has to be changed to

the stronger condition of detailed balance

pµP (µ→ ν) = pνP (ν → µ) . (2.22)

The choice of P (µ→ ν) depends on the specific problem. In general one can use

methods like the Metropolis [20], heatbath [21], Glauber [21] update or cluster

algorithms [22, 23]. The transition probabilities can be broken down to [15]:

P (µ→ ν) = A(ν → µ)g(ν → µ) , (2.23)

where A(ν → µ) is the acceptance ratio and g(ν → µ) is the choose probability,

which is indirectly chosen by the update.

2.3 Updates

For the chosen model, the update plays an essential role to generate new con-

figurations. In the case of spin systems one never notices this, because a single

spin flip is a simple but permitted update. For polymer systems like the one

examined here it quickly gets much more complicated.

The choose probabilities g(ν → µ) must fulfill two important properties.

First, the update or at least the combination of updates has to be ergodic. This

is important to make sure that every configuration in the configuration space

could be reached in a finite number of updates. Second, the ratio of probabilities

to get the new from the old configuration and backward must be calculable. In

detail this means:

• Ergodicity = every configuration can be reached from every configuration

in NS steeps

g(ν → µ) = g(ν → λ1) ·
NS∏

i=1

g(λi → λi+1) · g(λNS
, µ) , (2.24)
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∆ϕ
∆ϑ

Figure 2.5: Spherical update. One monomer is moved on the surface of the spherical sector

with opening angle ϑmax = 5◦. The change of the bonding angle is called ∆ϑ and the rotation

angle is named ∆ϕ. All following monomers are moved by the same difference.

• Transition ratio:
g(ν → µ)

g(µ→ ν)
= const.(ν, µ) , (2.25)

• Normalization

0 ≤ g(ν → µ) ≤ 1 (2.26)

and ∑

µ

g(ν → µ) = 1 . (2.27)

For the following updates the transition ratio is always one:

g(ν → µ) = g(µ→ ν) , (2.28)

i.e. the “forward” and “backward” moves between two configurations have the

same probabilities. This can be seen in the following sections. If the backward

and forward transitions don’t have the same transition probabilities this has to

be taken into account in the transition probability (Eqn. (2.44) ), and is then

called biased update1.

2.3.1 Spherical Update

This update changes the tail of a chain by moving one monomer of a sphere,

that is why it is called spherical update.

First it picks one arbitrary monomer, e.g. the jth one, then the (j + 1)th

monomer is changed to a position on the cap of a spherical sector. The center

of the associated sphere is given by the jth monomer and the opening angle of

this spherical sector is limited by ϑmax = 5◦. As the bonding lengths are fixed

to unity, the sphere has obviously the radius one. For better understanding see

Fig. 2.5. The old connection vector ~r between the jth and (j + 1)th monomer

1Originally this was called Metropolis-Hasting update [24, 25]. In recent times there are

several new examples like Biased Metropolis-heatbath algorithm [26], biased multicanonical

sampling [27] and Multiple Gaussian modified ensemble [28].
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~r = ~rj+1 − ~rj (2.29)

is replaced by a new vector ~r ′ given as:

~r ′ = r cos∆ϑ ~er(~r ) + r sin ∆ϑ sin∆ϕ ~eϕ(~r ) + r sin∆ϑ cos ∆ϕ ~eϑ(~r ) , (2.30)

which simplifies with the help of Eqn. (2.2) to

~r ′ = cos∆ϑ ~er(~r ) + sin ∆ϑ sin ∆ϕ ~eϕ(~r ) + sin ∆ϑ cos∆ϕ ~eϑ(~r ) . (2.31)

For details about the choice of ~er, ~eϕ and ~eϑ and the dependence on ~r see

Sect. A.1. The angles ∆ϕ and ∆ϑ are random variables. But as ~r ′ should be

distributed uniformly on the cap of the spherical sector, the angles have to be

chosen in a special way. Every infinitesimal small part of the area dA on the

cap of the spherical sector should have the same probability:

dP ∝ dA . (2.32)

With the help of ordinary spherical coordinates one gets:

dA = cosϑ dϑdϕ = d(cosϑ)dϕ , (2.33)

that is why the ∆ϕ is chosen uniformly from the interval [0, 2π), but for ∆ϑ

the cosine cos∆ϑ must be chosen uniformly from the interval (cosϑmax, 1]. So

Eqn. (2.31) can be written as:

~r ′ = (1− ar(1 − cosϑmax)) ~er(~r )

+

√
1− (1− ar(1− cosϑmax))

2 sin(2πbr) ~eϕ(~r )

+

√
1− (1− ar(1− cosϑmax))

2
cos(2πbr) ~eϑ(~r ) ,

(2.34)

where ar and br are uniformly distributed random numbers of the interval [0, 1)

which can be generated by every common random number generator [18, 17].

All the following monomers (j+2 . . .N) are changed by the difference vector

∆~r = ~r ′ − ~r . (2.35)

As the direction of numbering the monomers is free to choose one can do this

update in backward and forward direction, here called forward and backward

spherical update. Obviously for a system of a single polymer both updates are

identical but not for two or more polymers in a system.

As mentioned above, the probability for this update to get from an old to

a new configuration and backward is equal (see Eqn. (2.28) ). This can easily

be proven by replacing ~r by ~r ′. (And remember that ∆ϕ and ∆ϑ are random

angles.)
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~v

α
Figure 2.6: Rotation update, which rotates

a single monomer by random angle α around

the axis ~v defined by the two neighboring

monomers. This is a pivot-like update, which

itself alone is not ergodic, because the end

monomers can not be updated.

2.3.2 Rotation Update

The rotation update is a very simple update which changes only the position

of one single monomer. On a 2D-lattice this update is a corner flip update,

but due to the continuous space there is more than one possibility to flip. First,

a monomer is chosen randomly, e.g. the jth monomer. As axis ~v for the rotation

the connection between the (j − 1)th and the (j + 1)th monomer is used:

~v =
~rj−1 − ~rj+1

|~rj−1 − ~rj+1|
. (2.36)

Next, the connection vector ~r = ~rj − ~rj−1 is rotated by a random angle α ∈
[0, 2π) around this axis (see Fig. 2.6). So the new position of the jth monomer

is given by:

~r ′
j = R(~v, α)~r + ~rj−1 . (2.37)

For details about the rotation matrix R(~v, α) see Sect. A.2. Obviously this

update is not ergodic, so the sequence of updates together with the spherical

update have to be chosen to be ergodic, but at least the probability to come

from the old to the new configuration and backward is equal (see Eqn. (2.28) ).

2.4 Simulation Methods

In addition to the updates this section gives a short overview of the used Monte

Carlo methods, which are mostly generalized ensemble methods [29]. These

methods are necessary because of the mixture of repulsive and attractive in-

teraction forces which make the energy landscape “rough”2. To overcome this

multiple-minima problem, more sophisticated simulation techniques, like paral-

lel tempering and multicanonical simulation, have to be used to obtain reliable

and accurate results. All these could also be combined with other models if

another update is given.

2 The phrase “rough energy landscape” is often used together with spin glass and bio-

physical systems and became a dictum for the problems in simulating such systems with

multiple-minima in the energy.
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2.4.1 The Metropolis Update

We used the Metropolis update [20]:

PMetro(ν → µ) = AMetro(ν → µ)g(ν → µ) +

(
1−

∑

λ

A(ν → λ)g(ν → λ)

)
δνµ

(2.38)

with the famous Metropolis acceptance ratio:

AMetro(ν → µ) = min

(
1,

pµ

pν

)
. (2.39)

The second term on the r.h.s. of Eqn. (2.38) is simply to satisfy the normaliza-

tion (see Eqn. (2.20) ). The condition of detailed balance (see Eqn. (2.22) ) is

also fulfilled:

PMetropolis(ν → µ)

PMetropolis(µ→ ν)
=

A(ν → µ)

A(µ→ ν)

g(ν → µ)

g(µ→ ν)
(1 − δµν) + δµν (2.40)

(2.28)
=

A(ν → µ)

A(µ→ ν)
(1− δµν) + δµν (2.41)

=
A(ν → µ)

A(µ→ ν)
+ δµν

(
1− A(µ→ µ)

A(µ→ µ)

)

︸ ︷︷ ︸
=0

(2.42)

=
A(ν → µ)

A(µ→ ν)
(2.43)

=
pµ

pν
. (2.44)

The normalization condition in Eqn. (2.19) can be satisfied by the choice of

g(ν → µ).

We used the Metropolis update because one does not need to know all pos-

sible transitions like for the heatbath algorithm. And cluster algorithms are so

far unknown for polymers.

After performing a simulation with those conditions one obtains a setM of

configurations distributed with pµ. So Eqn. (2.16) changes to:

Ô(T ) =

∑
µ∈M Oµpµ

−1e−Eµ/kBT

∑
µ∈M pµ

−1e−Eµ/kBT
. (2.45)

This is the estimator of the expectation value (see Eqn. (2.15) ) and a reweighted

mean value, this is why the equation is the so called master reweighting equation

which is important for every one of the following methods.

2.4.2 Canonical Simulations

As the name implies, this kind of simulation tries to produce a random subset of

states distributed according to the canonical Gibbs-Boltzmann ensemble. That
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is why one uses:

pµ = e−Eµ/T , (2.46)

where kB was set to 1 (see Sect. 3.1). Especially in Eqn. (2.39) of Sect. 2.4.1

this has to be inserted. The sampled distribution of energies is given by:

Pcan(E, T ) = Ω(E)e−E/T , (2.47)

which is the canonical distribution and Ω(E) the density of states defined by:

Ω(E) =
∑

µ∈M

δE,Eµ
. (2.48)

Also the reweighting equation simplifies to

Ô(T ) =

∑
µ∈M Oµ∑
µ∈M 1

=
1

n

n∑

i=1

Oi = Ō(T ) , (2.49)

which is just the common mean value Ō(T ) of n different measurements.

This sampling was the conventional method for years but has several prob-

lems. Because of the fixed temperature certain configurations have very low

probabilities, that is why in a simulation of finite length they will never appear.

This leaves only a very small interval of reweighting the histogram to other

temperatures (Eqn. (2.45) and [30]).

Hcan(E, T ′) = Hcan(E, T ′)eE/T e−E/T ′

. (2.50)

Also mean values can be calculated in very small intervals around the simulation

temperature. More simulations at different temperatures are necessary and

have to be combined by multi histogram reweighting (see Sect. 2.4.6). But

because of the rough free-energy landscape the system can get trapped during

the simulation and it is not sure that an important region is sampled.

2.4.3 Multicanonical Simulations

As the canonical simulations have problems in sampling configurations with low

probabilities, it seems useful to sample another distribution:

Pmuca(E) = Ω(E)Wmuca(E) ≈ const. (2.51)

This is the multicanonical distribution [31]. Obviously this distribution does

not have any problems with low probabilities, because it is flat. The state

distribution is given by:

pµ ∝Wmuca(Eµ) , (2.52)

which has to be inserted in Eqn. (2.39). But a new problem arises: The density

of states Ω(E) is unknown and so the multicanonical weights Wmuca(E) also
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have to be identified. One way to solve this problem is to use the estimator of

the density of states from the Wang-Landau algorithm [32]. Here another way

described by W. Janke [33] was used. The so called multicanonical recursion is

explained in detail in Sect. B. In summary it works as follows [34]:

1. Set start values

n = 1 , Wmuca
1 (E) = 1 ∀ E (2.53)

2. Perform multicanonical simulation with pµ = Wmuca
n (Eµ) and gain his-

togram Hn(E) of energies

3. Calculate the old ratios of neighboring energies out of the old weights

Rn(E) =
Wmuca

n (E + ∆E)

Wmuca
n (E)

(2.54)

4. Calculate the new ratios

lnRn+1(E) = lnRn(E) +
qn(E)

pn(E)
ln

(
Hn(E)

Hn(E + ∆E)

)
(2.55)

with

qn(E) =
Hn(E + ∆E)Hn(E)

Hn(E + ∆E) + Hn(E)
, (2.56)

and

pn(E) =

n∑

i=1

qi(E) (2.57)

5. Calculate the new weights out of the new ratios (see Eqn. (2.54) )

6. Increase n

7. If n ≤ nend goto 2

After nend steps the recursion is aborted, then the obtained weights are used as

input

Wmuca(E) = Wmuca
nend

(E) (2.58)

to perform a long multicanonical simulation with high statistics. The means of

a multicanonical simulation can be calculated according to Eqn. (2.45).

2.4.4 Energy Landscape Paving

This minimizer3 [37] became very popular in the last years because it is so

simple. The only thing to change is to replace the energy by an effective energy

E → Eef = E + H(E, t) , (2.59)

3 A minimizer is an algorithm to find the lowest energy state. There are several approaches

like quasi-Newton [35], conjugated gradients [36] and energy-landscape-paving [37].
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where H(E) is the histogram of the energies. The rest is just a normal canonical

simulation at a low temperature. This algorithm works quite well because the

effective energy is time dependent. If the system gets trapped in a local energy

minimum, the histogram H(E) for this E will increase, so the effective energy

increases and states with this energy become less attractive. The system will

leave the state with this energy. But because of this time dependence, this

algorithm only finds the lowest energy but not the thermodynamics. Another

problem is that this algorithm cannot distinguish between different structures

at the same energy. And configurations which are not generated by the updates

can not be found either.

2.4.5 Parallel Tempering

This method [38] is also often called replica exchange method. This was coined

by K. Hukushima and K. Nemoto [39] in the field of spin glasses, but was

independently invented 10 years earlier by R.S. Swendsen and J.-S. Wang [40].

The idea is as simple as brilliant. The probability to be in a configuration µ at

temperature T is

pµ(T ) = e−Eµ/T . (2.60)

If you have two copies µ1 and µ2 of the system at different temperatures T1 and

T2 the probability for the combined system to be in that state is:

pµ1
(T1) · pµ2

(T2) = e−(Eµ1
/T1+Eµ2

/T2) = P ({µ1, T1}, {µ2, T2}) . (2.61)

If one exchanges µ1 and µ2 the probability changes to:

pµ1
(T2) · pµ2

(T1) = e−(Eµ1
/T2+Eµ2

/T1) = P ({µ1, T2}, {µ2, T1}) . (2.62)

Now one can choose the acceptance ratio as in the Metropolis update (see

Eqn. (2.39) ):

P (µ1
exchange←→ µ2) = P ({µ1, T1}, {µ2, T2} → {µ1, T2}, {µ2, T1}) (2.63)

= min

(
1,

pµ1
(T2) · pµ2

(T1)

pµ1
(T1) · pµ2

(T2)

)
(2.64)

(2.61)
= min

(
1,

e−(Eµ1
/T2+Eµ2

/T1)

e−(Eµ1
/T1+Eµ2

/T2)

)
(2.65)

= min

(
1,

e−Eµ1
(1/T2−1/T1)

e−Eµ2
(1/T1−1/T2)

)
(2.66)

= min
(
1, e−(Eµ1

−Eµ2
)(1/T2−1/T1)

)
(2.67)

= min
(
1, e∆E·∆β

)
(2.68)

This simple equation defines the acceptance ratio. The algorithm can be gen-

eralized for any number of copies. But as the acceptance drops exponentially
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T1

T2

T3

T4

CPU 1:

CPU 2:

CPU 3:

CPU 4:
LU GU LU GU LU GU LU GU LU

Figure 2.7: A possible scheme of a system with even number of processes (copies of the

system) in a parallel tempering simulation. “GU” stands for Global Update and “LU” for

Local Update.

W1/T1

W2/T2

W3/T3

CPU 1:

CPU 2:

CPU 3:
LU GU LU GU LU GU LU GU LU

Figure 2.8: A possible scheme of a system with odd number of processes (copies of the

system) in a parallel tempering or multicanonical replica exchange simulation. “GU” stands

for Global Update and “LU” for Local Update.

with the difference of the temperatures one should only allow exchanges with

neighboring temperatures. A good way to choose the temperatures is to look

at the histograms at fixed temperature if they overlap. Normally, it turns out

that equidistant on β-scale is a good choice. Between the temperature exchange

update a certain number of normal canonical updates were performed to change

the energy. So the total course is a mixture of global and local updates. This

process can easily be distributed on multiple CPU’s. The schemes of the differ-

ent updates (local and global) for odd and even number of copies that have been

used can be seen in Fig. 2.7 and Fig. 2.8.

2.4.6 Multi-Histogram Reweighting

After a parallel tempering simulation or multiple canonical simulations one has

multiple histograms at different temperatures and wants to combine them to use

the overall statistic for calculations at every temperature. The common way to

do this is multi-histogram reweighting [41, 42]. Details can be read in Sect. C.

The final result is:

Ω̂(E) =

∑
i Hcan(Ti, E)

∑
i NiẐ−1(Ti)e−E/Ti

(2.69)

where Ni are just the number of entries in the ith histogram

Ni =
∑

E

Hcan(Ti, E) (2.70)



22 CHAPTER 2. MODELS & METHODS

and the partition function Ẑ(T ) has to be determined self-consistently

Z(Tk) =
∑

E

Ω̂(E)e−E/Tk
(2.69)
=

∑

E

e−E/Tk

∑
i Hcan(Ti, E)∑

i NiZ−1(Ti)e−E/Ti
. (2.71)

2.4.7 Multicanonical Replica Exchange

There are different approaches [43] of combining the advantages of parallel tem-

pering and multicanonical simulation. The simplest version to use is a multi-

canonical distribution in every copy of the system instead of the canonical distri-

bution. The distribution of the configurations is given by (like in Eqn. (2.51) ):

pµi
= Wmuca

i (Eµi
) , (2.72)

where i now numbers the different threads in contrast to Sect. 2.4.5 where i

labeled the recursion level. The acceptance ratio can be calculated similar as in

Eqn. (2.68).

P (µ1
exchange←→ µ2) = min

(
1,

Wmuca
1 (Eµ2

)Wmuca
2 (Eµ1

)

Wmuca
1 (Eµ1

)Wmuca
2 (Eµ2

)

)
. (2.73)

This algorithm behaves like a multicanonical simulation in every single process

but finds new states much faster because of the multiple processes. Also it does

not get trapped as often as a normal single multicanonical simulation because

of the exchanges. Another big advantage is to get more statistics in less time4.

The scheme of local and global updates can be seen in Fig. 2.8 and Fig. 2.9.

2.5 Error Estimation

The error estimation is an important fact in the field of simulations because

a good result with a big error is as worse as a wrong result with a too small

error. It is not always possible to do this estimation exactly, but at least for

the common mean values it is possible. This is described in the first subsection.

For the other cases the blocking jackknife techniques was used, which can be

found in the second subsection.

2.5.1 Autocorrelation Function

The update plays an important role for generating new configurations. As

mentioned in Sect. 2.3 the sequence of updates has to be chosen ergodic to satisfy

4 This is only half of the truth: If one would perform the multiple (single process) simulation

with different seeds on several machines, one would get the same statistics, but would not use

the advantages of the exchanges. On the other hand one would get rid of the communication

between the processes, which costs lots of computer time. This is why this kind of simulation

strongly depends on the equipment and the preference of the researcher.
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W1

W2

W3

W4

CPU 1:

CPU 2:

CPU 3:

CPU 4:

LU GU LU GU LU GU LU GU LU

Figure 2.9: A possible scheme of a system with even number of processes (copies of the

system). In contrast to the parallel tempering scheme (Fig. 2.7) periodical boundary condi-

tions for the exchanges are introduced. “GU” stands for Global Update and “LU” for Local

Update.

that every configuration could be reached in NS update steps. It is obvious

that after one single update not every configuration could be reached, i.e. the

configuration after the update looks a little bit like the configuration before the

update. This is called autocorrelation. The normal correlation between two

quantities is described by the cross expectation value:

〈A B〉 , (2.74)

where A and B are some observables. For the uncorrelated case it holds that:

〈A B〉 = 〈A 〉〈B〉 . (2.75)

In the case of autocorrelation we set

A = Ok (2.76)

and

B = Ok+i , (2.77)

where the subscript stands for the discrete time. The values of observable O at

time k is correlated with its value at some other time k + i:

〈OkOk+i〉 − 〈Ok〉〈Ok+i〉 6= 0 . (2.78)

In equilibrium the expectation value should be time independent:

〈Ok〉 = 〈Oj〉 . (2.79)

So we define the autocorrelation function [44] which should only depend on the

time difference:

A(i) =
〈OkOk+i〉 − 〈Ok〉2
〈Ok

2〉 − 〈Ok〉2
. (2.80)
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k

A
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)

Figure 2.10: The autocorrelation function

A(k) drops exponentially with the difference

of the time k. This behavior is only accu-

rate in theory, normally, for large difference

k the autocorrelation function will start to

get noisy. The hatched area is approximately

the integrated autocorrelation time τint (see

Eqn. (2.84)).

The denominator was only introduced for normalization. So the autocorrelation

function is theoretically of the interval

A(i) ∈ [0, 1] . (2.81)

With “theoretically” we mean in the case of measurements without noise. As

we can see later, values smaller than 0 are possible for measurements with noise.

For good5 processes the autocorrelation function behaves like:

A(i)
i→∞−→ ae−i/τexp , (2.82)

where τexp is the exponential autocorrelation time. The theoretical behavior

can be seen in Fig. 2.10. Another appearance of the autocorrelation function is

inside the integrated autocorrelation time

τint =
1

2
+

N∑

k=1

A(k)

(
1− k

N

)
, (2.83)

where N is the number of measurements of a quantity. This equation can be

simplified by neglecting the last term due to the exponential decay of A(k) (see

Eqn. (2.82) ) and large N :

τint =
1

2
+

N∑

k=1

A(k) . (2.84)

Now these two terms are just the area below the autocorrelation curve, which

is easy to measure (see Fig. 2.10). But because of the noisy tail of the autocor-

relation function a cutoff kmax has to be introduced:

τint(kmax) =
1

2
+

kmax∑

k=1

A(k) . (2.85)

5 The definition of good is very hard. Mostly the autocorrelation function is a product of

multiple autocorrelation functions with different autocorrelation times. And only the behavior

of the strongest autocorrelation time can be seen. The details about autocorrelation can be

found in a work by W. Janke [44].
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The choice of the cutoff6 is arbitrary, but has to be done consistently for all

measurements. Here the cutoff was chosen to be the point where the autocorre-

lation function first subtends the base line, because this is obviously the value

where two measurements are totally uncorrelated. This choice also helps to

avoid problems caused by autocorrelation functions with a “fat tail”.

So the autocorrelation time to measure is

τint =
1

2
+

N∗∑

k=1

A(k) , (2.86)

where N∗ is the first zero of the autocorrelation function A(k).

As seen in Eqn (2.83), the integrated autocorrelation time plays an important

role in the error calculation of correlated mean values Ō of the observable O.

This error σŌ is given by [44]:

σ2
Ō =

σ2
Oi

N
2τint , (2.87)

where N is just the number of correlated measurements of the observables O

and σOi
is the common variance of O. In contrast to the uncorrelated error of

the mean value

σ2
Ō =

σ2
Oi

N
(2.88)

the factor 2τint was added. This implies the definition of the effective number

of measurements:

Neff = N/2τint < N . (2.89)

The effective number of measurements is the number of measurements to be

carried out in order to have the same error as for the uncorrelated case. It

is obvious that as the autocorrelation time gets bigger, Neff gets smaller and

smaller.

There are unattended facts about the autocorrelation. First the autocor-

relation function depends on the quantity to measure, which means e.g. the

autocorrelation time for energy and radius of gyration can be totally different.

This comes from the fact that energy is not directly correlated to the radius of

gyration. Thus only autocorrelation times of the same quantity are comparable.

Another important point is that the autocorrelation time strongly depends

on the kind of simulation. The autocorrelation time of a canonical and a multi-

canonical simulation can not be compared easily. However, an upper border

of the autocorrelation has been compared by the author [5] for multicanonical

simulations and parallel tempering simulations with an all-atom protein model.

Only in the case of canonical simulations the autocorrelation time has a sim-

ple meaning [44]. And even for this case it depends on the temperature due to

6 Another popular self-consistent choice is to cut off the summation once kmax ≥ τ(kmax).
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OJ,2
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Figure 2.11: The scheme of the block Jackknife error estimation. Out of the total data a

estimator Ô is calculated. The NB Jackknife blocks are formed by leaving out one block of

the NB blocks of the complete data. Every Jackknife block defines a new estimator OJ,i out

of which the jackknife error (see Eqn. (2.90)) is calculated.

the fact that for higher temperatures the acceptance rate (see Eqn. (2.39) ) is

higher and so the autocorrelation time gets smaller. And for low temperatures

more proposed configurations will be rejected which lead to a higher autocorre-

lation time.

2.5.2 Blocking Jackknife Technique

The calculation from the last section can be done easily for common mean

values, but for the other quantities, e.g. specific heat, the Blocking Jackknife

technique was used, because it is much simpler.

This technique [44] is a combination of the Jackknife analysis [45, 46] and

the blocking analysis. First an estimator of observable O is calculated out of the

complete data of the simulation, called Ô (see Eqn. (2.45) ). For this estimator

one wants to evaluate the error, too. So the second step is to divide the complete

data in NB blocks, i.e. blocking Jackknife techniques. The NB Jackknife blocks

(see Fig. 2.11) are formed by leaving out one of the NB blocks. (A common

mistake is to leave out one of every NB values of the complete data, but this

will not work!) The next step is to calculate the other NB estimators of O out

of the NB Jackknife blocks which then are called OJ,i with i = 1 . . .NB. The

Jackknife error is now defined by:

ǫ2
J,Ô

=
NB − 1

NB

NB∑

i=1

(
OJ,i − Ô

)2

(2.90)

For the simplest case of the common mean value:

Ô = Ō =
1

N

N∑

i=1

Oi , (2.91)

where N is the number of measurement. We show that the Jackknife error is

equal to the exact error of uncorrelated measurement (see Eqn. (2.87) ) under
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one strong assumption for the number of Jackknife blocks NB:

NB = N . (2.92)

The jackknife error simplifies to:

ǫ2J,Ō

(2.90)
=

N − 1

N

N∑

i=1

(
OJ,i − Ō

)2
(2.93)

=
N − 1

N

N∑

i=1


 1

N − 1

∑

j 6=i

Oj − Ō




2

(2.94)

=
1

N(N − 1)

N∑

i=1




N∑

j=1

Oj −Oi − (N − 1)Ō




2

(2.95)

(2.91)
=

1

N(N − 1)

N∑

i=1

(
NŌ −Oi − (N − 1)Ō

)2
(2.96)

=
1

N(N − 1)

N∑

i=1

(
Ō −Oi

)2
(2.97)

=
ǫ2Oi

N
(2.98)

= ǫ2Ō . (2.99)

This is the same error as given in Eqn. (2.87), i.e. the error of uncorrelated

measurements. Motivated from this result the blocking jackknife technique is

the method of choice, because of its simplicity.
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Chapter 3

Conventions

3.1 Units

The units are chosen as usual in computational statistical physics, i.e.kB = 1 .

So all formulas are free of the kB’s. For example, the specific heat cV simplifies

to:

cV =
1

NGT 2

(
〈E2〉 − 〈E〉2

)
, (3.1)

where NG is the total number of monomers in the system (see Eqn. (3.15) ).

The global definitions of the quantities measured in Chap. 4 are described in

detail in Sect. 3.4.

3.2 Common Simulation Settings

The parameters given here are used in all simulations if not mentioned otherwise

in the special section.

The box size has to be chosen carefully. In a big box the single chains will

rarely find each other and in a too small box the stretched configurations are

not possible. That is why taking

Lbox = 40 (3.2)

is a good choice, because up to 40 monomers are possible in the stretched con-

figuration in all directions. Also up to 69 monomers are possible in the stretched

configuration along the room diagonal of the cube. One should mention that

the stretched configuration is less important for the thermodynamics.

The smallest energy difference for the histograms and the multicanonical

weights was

∆E = 0.01 . (3.3)

29
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Name of the update Shortcut ABSimT Number

Nothing N 0

Forward spherical update F 1

Backward spherical update B 2

Rotation update R 3

Multiple rotation update Q 4

Move update M 5

Table 3.1: Table of the available updates. The details are explained in Sect. 2.3. “Nothing”

was added just for technical reasons. The ABSimT numbers are helpful to generate an initfile

for ABSimT (see Sect. D).

This is a good choice between to big arrays in the program and losing to much

accuracy because of the binning. The time series with continuous values are

saved as well for data analysis.

As mentioned above, the chosen sequence of updates has to be ergodic (see

Sect. 2.3), which leads to the used sequence of update (see Table 3.2). The

types of updates implemented in the used program (see Appendix D) are listed

in Table 3.1. The update, which does nothing was added only for technical

reasons. For the spherical update a maximum opening angle of

ϑmax = 5◦ (3.4)

for the spherical sector was used. The rotation update chooses the random

rotation angle

α ∈ [0, 2π) (3.5)

out of the full possible interval. In the simulations mostly the ergodic sequence

FRBR was used. The monomer on which every single chain update operates is

chosen randomly, that means in average every monomer of a chain is updated

for the same time. This part is performed as often as there are monomers in

the system. Normally, this would be called a sweep but as it is combined with

the sequence of updates it is called sweep sequence here. The length of such

a sweep sequence can be calculated easily:

Lswseq = Lseq ·
k∑

i=i

Ni , (3.6)

where Ni is the number of monomers in the ith chain. The length of the

simulations will be measured in units of sweep sequences. For a system with

more than one chain the order of touching the different chains is important as

well. In the majority of cases the chains are updated in fixed order, one after
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Number of Chains Order of chain to update Sequence of the updates

1 1111 FRBR

2 12121212 FFRRBBRR

3 123123123123 FFFRRRBBBRRR

4 1234123412341234 FFFFRRRRBBBBRRRR

Table 3.2: The different chains are always updated one after another with the same type of

updates and then the type is changed in the order FRBR.

another, at a fixed kind of update, then the update is changed. An example for

one to four chains can be seen in Table 3.2.

3.3 Distance Measurement

The distance measurement is changed according to the length of the box (see

Eqn. (3.2) ), that is why

| · − · | −→ dper(·, ·) , (3.7)

where dper was defined in Eqn. (2.11) of Sect. 2.1.3. For technical reasons the

whole simulations was done in the “first” box:

B1 = [0, LBox)× [0, LBox)× [0, LBox) . (3.8)

In this case also the shortest difference vector between two points (~p, ~q ∈ B1)

can be calculated accurately:

~dper (~p, ~q) =




dper
1 (p1, q1)

dper
2 (p2, q2)

dper
3 (p3, q3)


 =

3∑

i=1

dper
i (pi, qi)~ei , (3.9)

where the ith component of this vector is:

dper
i (pi, qi) =





(pi − qi)+LBox : (pi − qi)< −LBox/2 ,

(pi − qi) : −LBox/2 <(pi − qi)< LBox/2 ,

(pi − qi)−LBox : LBox/2 <(pi − qi) .

(3.10)

So the periodical distance simplifies to:

dper (~p, ~q) =

√√√√
3∑

i=1

(dper
i (pi, qi))

2
. (3.11)

This is now the shortest distance between all periodic boxes as it was mentioned

in Sect. 2.1.3. A plot of the distance of two points in a one dimensional box can

be seen in Fig. 3.1.
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Figure 3.1: Periodic distance of two points

in a 1D box scaled with the box length Lbox.

3.4 Measured Thermodynamic Quantities

3.4.1 Energy Quantities

First of all the Lennard-Jones energy term of Eqn. (2.5) changes a bit because

of the periodic box.

ELJ = 4

N−2∑

i=1

N∑

j=i+2

(
1

dper(~ri, ~rj)12
− C(σi, σj)

dper(~ri, ~rj)6

)
, (3.12)

where C(σi, σj) was defined in Eqn. (2.6). The mean value of the energy can

be calculated with the help of Eqn. (2.45).

The specific heat is defined as:

cV =
1

NG

dÊ

dT
, (3.13)

which can be calculated with the thermal fluctuation equation (see Sect. E.3):

cV =
1

NGT 2

(
Ê2 − Ê2

)
, (3.14)

where NG is the total number of monomers in the system with K chains:

NG =

K∑

i=1

Ni , (3.15)

where Ni is the number of monomers in the ith chain.

3.4.2 Aggregation Parameter

To distinguish between aggregated and fragmented configurations of polymers

another parameter has to be introduced. Recalling the well-known radius of

gyration:

rgyr
2 =

1

N

N∑

i=1

(~ri − ~rM )2 . (3.16)

The radius of gyration can be understood as the mean difference from the center

of mass ~rM defined by:

~rM =
1

N

N∑

i=1

~ri . (3.17)
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~rM

Figure 3.2: The center of mass ~rM (marked

with ×) is not well-defined for particles in

a periodic box when using Eqn. (3.17). It

should be on the left or right border line,

which is the same point in the periodic box.

~rM

Figure 3.3: The center of mass (marked

with ×) is not well-defined for particles in a

periodic box when using Eqn. (3.18) because

a fixed zero point implies the problem of the

global coordinate system, which does not al-

ways exist for more than 3 particles.

The center of mass in a periodical box is not well-defined and has problems with

certain arrangements of particles (see Fig. 3.2). So the first guess is to change

the definition to

~rM
′ =

1

N

N∑

i=1

~dper(~ri,~0) . (3.18)

But there are also problems as can be seen in Fig. 3.3. The difficulties come

from the fact that for more than two particles a global coordinate system cannot

always be defined. Luckily Eqn. (3.16) can be rewritten as (see Sect. E.2):

rgyr
2 =

1

2N2

N∑

i=1

N∑

j=1

(~ri − ~rj)
2

. (3.19)

This also is a good definition in a periodical box after using the periodical

distance measurement:

rgyr
2 =

1

2N2

N∑

i=1

N∑

j=1

(
~dper(~ri, ~rj)

)2

, (3.20)

where the sum goes over all monomers in the system. One problem remains,

this quantity does not distinguish between different chains, that is why we need

to go over to the following description:

Γ2 =
1

2K2

K∑

i=1

K∑

j=1

(
~dper(~rM,i, ~rM,j)

)2

, (3.21)

where the local centers of mass of the K chains in the system are defined by:

~rM,i =
1

Ni

Ni∑

j=1

~dper(~ri, ~r1) + ~r1 . (3.22)
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For simulations without a periodic box this would just be the common center of

mass definition as in Eqn. (3.17). In this definition every other monomer could

be possible as reference point as well, as long as LBox > 2Ni, where Ni is the

number of monomers in the ith chain. Such measurements with local centers of

reference are common in simulations with periodic boundary conditions [47].

This aggregation parameter now distinguishes between the aggregated and

fragmented phase. The smaller values belong to the aggregated phase and higher

values are related to the fragmented phase. We can say that the aggregation

parameter is the radius of gyration of the centers of mass. To have a better

understanding of this one may take a look from an other point of view at the

aggregation parameter (see Eqn. (3.21) ). For the simple case of two polymer

chains the parameter simplifies to:

Γ2 =
1

2 · 22

2∑

i=1

2∑

j=1

(
~dper(~rM,i, ~rM,j)

)2

(3.23)

=
1

4
·
(

~dper(~rM,1, ~rM,2)
)2

. (3.24)

That is why the periodic distance between the centers of mass of the two chains

is just:

dper(~rM,1, ~rM,2) = 2Γ . (3.25)

Obviously this is a good quantity to see the aggregation.

The mean value of the aggregation parameter can be calculated from the

master reweighting equation (Eqn. (2.45) ) and its thermal fluctuation from the

thermal fluctuation equation (see Sect. E.3):

dΓ̂

dT
=

1

T 2

(
ÊΓ− Ê · Γ̂

)
. (3.26)



Chapter 4

Results

This chapter gives a detailed overview of simulations done in this thesis start-

ing with single-chain simulations and going over to two, three and more chains.

For details about the usual simulation settings see Sect. 3.2. If there are spe-

cial settings it will be mentioned in the relevant section. In combination with

aggregation we will often use the words “phase”, “order parameter” or “phase

transition”, so we want to emphasize that it should be called pseudo phase,

pseudo order parameter and pseudo phase transition, but for simplification we

omit the “pseudo”.

4.1 Single-Chain Simulations

Several works have been performed on single-chain properties of hydrophobic-

polar heteropolymer models, like thermodynamics [48, 49, 50] and folding be-

havior [51]. This data should be free of systematic errors, because of the very

different programs and simulation techniques applied. The first task was to re-

produce some of those known results by using my own program ABSimT (see

Chap. D).

4.1.1 Verification of Known Results

In comparison to former, similar studies [48, 51], periodic boundary conditions

and other updates were used. This can lead to some differences. The periodic

box should be no problem for

LBox > 2N , (4.1)

because in that case the periodic distance in Eqn. (3.11) is just the common

distance which was also used in the former studies. For the latter the spher-

ical update was the used update, but in this work the new rotation update

35
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Name Sequence of monomers

Seq. 13.1 AB2AB2ABAB2AB

Seq. 20.1 BA6BA4BA2BA2B2

Seq. 20.2 BA2BA4BABA2BA5B

Seq. 20.3 A4B2A4BA2BA3B2A

Seq. 20.4 A4BA2BABA2B2A3BA2

Seq. 20.5 BA2B2A3B3ABABA2BAB

Seq. 20.6 A3B2AB2ABAB2ABABABA

Seq. 34.1 AB2AB2ABAB2AB2ABAB2ABAB2AB2ABAB2AB

Table 4.1: Table of the used heteropolymer sequences [48].
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Figure 4.1: (a) The mean of the inner energy of Seq. 13.1 normalized on the number of

monomers (e = E/L). (b) The specific heat of Seq. 13.1 with the typical peak. The data for

this thesis called “CJ”, “BAJ”[48] and “SS”[51] show very good consistence.

was applied. But the choice of the update should make no difference for the

thermodynamics as long as the sequence of updates is ergodic. The used order

of updates can be found in Table 3.2. The selected polymer sequences [48] are

listed in Table 4.1.

4.1.2 Sequence 13.1

A comparison of specific1 inner energy and the specific heat of Seq. 13.1 (see

Table 4.1) with data from M. Bachmann et al. [48] and S. Schnabel [51] can be

seen in Fig. 4.1. The data were obtained by a multicanonical simulation with

120 recursions of 106 sweep sequences and a final simulation with 108 sweep

sequences. The consistence is very good, so it seems that the new updates do

not lead to a systematic error and the periodic boundary conditions do not

influence the results noticeably. The error bars are a little bit smaller because

1 With “specific” the normalization on the number of monomers is meant, this is a common

way to avoid the growing of all quantities with the size of the system.
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(b)(a)

Figure 4.2: (a) A configuration near the ground state, which belongs to the folded phase.

(b) A configuration from the high energy phase which shows the typical random coils.

τint

Sequence of updates

T FFFF FRBR

0.15 741 374

0.40 9.03 3.67
Table 4.2: Table of the different integrated

autocorrelation times for Seq. 13.1.

of the lower autocorrelation time which will be discussed in Sect. 4.1.3.

Also it is obvious that there is a peak in the heat capacity, which is caused

by a fundamental structural transition, which is also known from lattice hetero-

polymers [52]. In the low temperature region the folded configurations with

their characteristic hydrophobic (A type) core (see Fig. 4.2(a) ) are more proba-

ble, in contrast to the high-energy phase, where the configurations with random

coils are dominating (see Fig. 4.2(b) ). The transition point strongly depends

on the sequence of the heteropolymer. The peak is shown as the first point in

the research of finite-size scaling effects (see Sect. 4.4.3).

4.1.3 Autocorrelation Analysis

We compared the autocorrelation time of the energy for a canonical simulation at

two different temperatures, T = 0.15 and T = 0.40. The investigated sequence

was Seq. 13.1 (see Table 4.1). The measured autocorrelation function A(k)

and the cut-off integrated autocorrelation time τint(k) are shown in Fig. 4.3.

As expected, the autocorrelation time for the lower temperature was in general

higher because of the lower acceptance rate (see Table 4.2). The result is that the

choice of the sequence of updates gives a factor 2 in a direction that would not

have been expected. The mixed sequence FRBR (see Table 3.1) has a smaller

autocorrelation time than the sequence FFFF, which was used by nearly all
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Figure 4.3: (a) The autocorrelation function for Seq. 13.1 at temperature T = 0.15.

(b) The autocorrelation function for Seq. 13.1 at temperature T = 0.40. As expected, the

autocorrelation time increases in general with decreasing temperature, from T = 0.15 to

T = 0.40 by a factor 100. Also the autocorrelation time for the mixed update sequence FRBR

(see table 3.1) is a factor 2 smaller than for the sequence FFFF.

previous works [48, 50, 51]. An explanation for the results at low temperature

may be that the local pivot-like rotation update R is accepted much more often

than the global spherical update (F and B), because in this temperature region

the folded phase with very compact configurations and hydrophobic cores is

dominating.

4.1.4 Sequences 20.X

Also the well-researched sequences with 20 monomers (see Table 4.1) were tested

for agreement with data from M. Bachmann et al. [48] (see Fig. 4.4), because

these sequences are the first check point for every new heteropolymer simulation

program or algorithm, even comparisons with Molecular Dynamic simulations

[49] are possible.

The similarity of the results from the different simulations is apparent for

all 6 sequences. Multicanonical simulations with about 100 recursions and 105

sweep sequences each and a final simulation with 107 sweep sequences were

performed. We also tested different kinds of boundary conditions. Simulations

with and without periodic boxes lead to the same results due to the fact, that for

a well chosen box length the periodic distance measurement is the same as the

common measurement (see Sect. 4.1.1). Around 10 different simulations, like

parallel tempering and multicanonical replica exchange simulations, for every

chain led to equal results, which satisfy the trustfulness of the program.

From the physical point of view, it can be seen that thermodynamics depends

strongly on the sequence of monomers. The heat capacities shown in Fig. 4.4

have one or two peaks at different temperatures which result from the different

folding pathways [51] from the random-coil phase to the hydrophobic core region.

The small deviations in the lower energy region appear due to less statistics
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Figure 4.4: Specific heat of sequence with 20 monomers (see Tab. 4.1). The data from this

thesis, called “CJ” and data from Bachmann et al. [48] “BAJ” show very good consistence.

Depending on the number of hydrophobic A type monomers the maximum of the heat capacity

can vary between 2 and 5.

there.

As the number of hydrophobic monomers differs in the sequences, the size of

the core is also different. That is why the height of the peaks varies between 2

and 5. The higher peaks were obtained for the sequences with less of the A type

(Seq. 20.5 (see Fig. 4.4(e) ) and Seq. 20.6 (see Fig. 4.4(f) ) ), which automatically

form a more compact core than the others.

4.1.5 Homopolymers

The AB model can also be used for homopolymers by simple means. We chose

the A type to be the homomer. One could expect that there will be no hydro-

phobic cores due to the fact that there are no hydrophilic monomers. So the

ground states will have a totally different structure, to provide as much optimal

distance between the monomers as possible.
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Figure 4.5: (a) A configuration close to the ground state. The onset of the outer helix can

be seen. (b) The average of the inner energy (normalized on the number of monomers) and

the specific heat for Seq. A13.

The lowest energy found (E = −29.25) in a multicanonical simulation with

50 recursions of 105 sweep sequences and a final run with 107 sweep sequences

can be seen in Fig. 4.5(a). This structure is typical for homopolymers with

Lennard-Jones interaction [53, 54].

The region of interesting energies is slightly bigger than for a heteropolymer

of the same length. This comes from the fact that the B type monomers are

missing and the ground states have a much lower energy. But in general, the

graphs remain the same, the mean value of the inner energy is always mono-

tonically increasing and the specific heat has at least one peak at the transition

point between the random coil and the folded phase.

4.2 Solvents

Understanding fluids has been a big research field for years that is why we also

tried to simulate water in the AB model, which is some kind of Lennard-Jones

fluid. But we extremely simplified the water to a single B type monomer which

is then the simplest case of aggregation, whose energy function simplifies to:

Esystem =

N−1∑

i=1

N∑

j=i+1

(
1

r12
ij

− 1

2r6
ij

)
, (4.2)

where N is just the number of monomers in the system. As there are no bonding

constraints there is no bending energy. This Lennard-Jones energy function has

its minimum at

rBB
min =

6
√

4 ≈ 1.26 . (4.3)

This distance is the optimal distance for two B type monomers to form the

ground state. Every one of those optimal distances gives an energy of

EBB
min = −0.25 , (4.4)
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(d)(c)(b)(a)

Figure 4.6: Ground states of 2, 3, 4 and 5 “water” molecules. (a) The ground state of two

B type monomers is exactly a line with distance rBB
min (see Eqn. (4.3). (b) The ground state of

three B type monomers is exactly a equilateral triangle. (c) The ground state of four B type

monomers is exactly a regular tetrahedrons. (d) For five B type monomers it is not possible

to calculate the ground state analytically, but the configuration of the lowest energy found

looks like two tetrahedrons sharing the same base.

which is also the ground state energy of 2 B type monomers (see Fig. 4.6(a) ).

Obviously, the ground state of 3 B type monomers will form a equilateral trian-

gle with rBB
min as side length (see Fig. 4.6(b) ). The energy of this ground state

is −0.75. Four molecules form a regular tetrahedron with side length rBB
min (see

Fig. 4.6(c) ). This ground state has an energy of −1.5. As four molecules are the

maximum that can be treated analytically, we also simulated this system with

ELP and multicanonical simulations. The ELP simulation found a configuration

with energy of −1.499, which is very close to the exact value. The configura-

tion of lowest energy found in the multicanonical simulation was E = −1.498

which is also very close to exact value. The found configurations are regular

tetrahedrons. For five B type monomers it is not possible to predict the ground

state analytically. One could argue that the ground state should look like two

tetrahedrons sharing the same base (see Fig. 4.6(d) ). This formation has an

energy of −2.25, but in various ELP simulations we found configurations with

energies around −2.273. This configuration was a non-regular double tetra-

hedron. In the literature, such aggregates are known as Lennard-Jones crystals

or Lennard-Jones clusters [55].

4.2.1 Polymers in Solvents

The next step was to investigate some small polymers in solvent. The Seq. 8.1

(AB2A2B2A) was first studied without solvent. The configuration with the

lowest energy found in a vacuum can be seen in Fig. 4.7(a). The energy was

approximately −2.6. The configuration is symmetric because of the symmetry

in the sequence of monomers. For this reason, a similar configuration exists

where the middle angle is twisted, which has also the same energy. The heat

capacity (see Fig. 4.7(b) ) was obtained by a multicanonical simulation with 100

recursions and 105 sweep sequences each and a final simulation with 107 sweep

sequences.
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Figure 4.7: (a) The lowest energy found for Seq. 8.1 (AB2A2B2A) was around −2.6. The

configuration is symmetric and a similar configuration with the same energy, but an other

symmetry exist. (b) The inner energy and specific heat was obtained by a multicanonical

simulation.

The amount of “water” monomers mixed together with polymer Seq. 8.1

was also an interesting question, we tried 4, 8, 12 and 16 “water” monomers.

This is obviously insufficient to speak of a realistic simulation of a polymer in

solvent, but a bigger amount of “water” monomers was not possible because

of the effort of computer time. Even a simulation with 16 “water” monomers

at a fixed temperature takes around 12 times longer than a simulation without

“water” monomers which results from the fact that every water molecule has to

be updated.

But all simulations lead to problems with fixed box size. A small box size acts

like high pressure, but even more complicated, a big box size leads to vacuum

comparable state what causes a crystallization of the “water” monomers. That is

why in the case of mixed simulations we always found a combination of “water”

crystals with tetrahedron structures and the ground state of Seq. 8.1 as global

system ground.

For many particle systems it is known [13] that simulations at constant

pressure are much more effective than simulations with fixed volume like done

here. That is why one should go over from the {N, V, T } ensemble to the

{N, p, T } ensemble. This is technically harder and not implemented in the

program until now. Fortunately for two up to four particles the simulation with

fixed volume works also, if the box size is chosen well.

4.3 Two Polymer Chains

The investigation of two chains is the simplest non-trivial aggregation of two

smaller systems. We start with two heteropolymers with the Seq. 13.1 to come
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Figure 4.8: (a) The specific inner energy and heat capacity of 2 × Seq. 13.1. (b) The mean

of the aggregation parameter Γ and its fluctuation of 2 × Seq. 13.1. The specific heat as well

as the derivation dΓ/dT of the aggregation parameter Γ have a peak at T = 0.2, which can

be explained by the transition from the fragmented to the aggregated phase.

into the region of polymers with length 20 monomers. The Seq. 13.1 is just one

possible example and as arbitrary as any other sequence. Later we also study

homopolymers with length 13, which turned out to be technically a little bit

demanding.

4.3.1 General Facts

There are some general facts about aggregation included in this model. It is ob-

vious that the ground state is in the aggregated phase, because it is not possible

to form as much low energetic A-A and B-B contacts in the fragmented phase

as in the aggregated phase. But there are also high-energy configurations in

the aggregated phase for too small distances of AA and BB pairs. The barrier

between aggregated and fragmented phase comes from the fact that the config-

urations in both phases have completely different geometries. In the fragmented

phase configurations with separated hydrophobic cores are dominating and in

the aggregated a joined core is formed. For homopolymers this works as well

because of the structure with outer helices at the single chains. Two phases

with a barrier in between will behave like a first order phase transition.

4.3.2 Dual Seq. 13.1

We performed a multicanonical simulation with around 180 recursions with

105 sweep sequences and a final run with 108 sweep sequences. Mean energy

and specific heat are shown in Fig. 4.8. We have done several cross-checks

(≈ 50 simulations) with other multicanonical simulations starting from differ-

ent seeds and multicanonical weights. We also compared the results with parallel

tempering simulations over various temperature intervals and canonical simula-

tions at different temperatures. In the heat capacity one pronounced peak can
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(a) (b)

Figure 4.9: (a) A configuration in the aggregated phase with some random coils, but joint

hydrophobic core. (b) A configuration from the fragmented phase which shows the typical

random coils. The single chains do not interact which each other due to the large distance.

The scale of the picture is changed due to a better view.

be observed which is four times larger than the one for the single chain (see

Fig. 4.1(b) ). This is the second point in the finite-size scaling analysis, it seems

like the scaling law goes with the square of the number of polymer chains. The

surprising thing is that there is only one peak. One would expect two peaks due

to the second transition from random coils to folded phase. It seems that they

coincide with each other.

The plot of the aggregation parameter Γ (see Fig. 4.8(b) ) shows that the

expected transition from the fragmented to aggregated phase happened at a tem-

perature around 0.2. In the lower temperature regions (smaller than 0.2) the

aggregated configurations (see Fig. 4.9(a) ) are dominating and for the high-

temperature regions the fragmented configurations (see Fig. 4.9(b) ).

Also it seems that the average of Γ goes against some limit (≈ 9.8). So

the distance between the centers of mass (see Eqn. (3.25) ) goes against 19.6,

which is nearly LBox/2. This is also the mean distance of two free particles

in a periodic box (see Sect. E.4). The deviation comes from the fact that the

chains are not ideal particles without a volume expansion. So one can say that

for high temperatures both polymers behave like they were separated.

The phases are well separated which can be seen in the multicanonical dis-

tribution (see Fig. 4.10(a) ). There is a small dip between them. The multi-

canonical distribution could be reweighted to a canonical distribution, but as

the multicanonical weights range over 100 orders of magnitude (see Fig. 4.10(b) )

this would not be that meaningful. Because of this dip, which marks the barrier,
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Figure 4.10: (a) Multicanonical distribution Pmuca(E, Γ) (see Eqn. (2.51)). The transition

from the fragmented to the aggregated phase can be seen clearly between the energy of −5 . . . 0.
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Figure 4.11: (a) The energy distribution close to the transition point. (b) The distribution

of the aggregation parameter close to the transition point. The characteristic behavior of

a first order like transition can be seen in the distribution of the energies, but also in the

distribution of the aggregation parameter Γ.

the transition is first order like. The variations of the aggregation parameter in

both phases are very different. In the aggregated phase, the variation is of the

order one and in the fragmented phase the variation is of the order ten, because

the peak for low values of Γ is much higher than the peak at larger ones (see

Fig. 4.11(b) ) for equilibrium between both phases.

This first-order-like behavior can also be seen in the histogram of a canonical

simulation at this transition temperature (T ≈ 0.201). This is observable as the

well-known double-peak structure which can be seen in Fig. 4.11(a). Also the

distribution of Γ shows such a double peak structure (see Fig. 4.11(b) ). Example

configurations from both peaks can be seen in Fig. 4.9.

One could expect two ways of getting from the aggregated to the fragmented

phase. The first possibility is that every single chain forms a hydrophobic core

and then they dock to each other and form a global hydrophobic core without

totally unfolding again. The second way is to first unfold, form a global hydro-

phobic core and then fold again. So the question is if the chains have to unfold

to aggregate.
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Figure 4.12: The multicanonical distribu-

tion of the aggregation parameter Γ at low

energies for twice Seq. 13.1 shows several

peaks. The peak at Γ = 0.8 are the half

sphere configurations and at Γ = 0.47 are the

entangled configurations. Intermediate con-

figurations exist, but a clear classification is

not possible.

We observed the latter possibility for several aggregation events. The reason

is probably that in the aggregated phase, which is more closely packed than the

fragmented phase, large structural changes like forming a global hydrophobic

core out of two single cores is much less probable. In contrast, it is always pos-

sible to form a hydrophobic core at higher temperature because of the random

coils which can easily interact.

It has to be mentioned that in our simulations this process is no real dynamic,

because of the Monte Carlo simulation. However, the way of aggregation shows

that rigid-body docking is more suppressed than flexible docking.

It should be noted that the individual conformations in the aggregate strong-

ly differ from the single-polymer ground states (Etotal
min ≈ −4.967). Their respec-

tive energies in the aggregate are different and much larger (Etotal
1,min ≈ −3.197

and Etotal
2,min ≈ −3.798). The strongest contribution is due to the interaction be-

tween the heteropolymers (Einteract,min ≈ −11.412).

In the area of the lowest energies (≈ −18.3) we found two different kinds of

structures. The first kind has values of Γ around 0.8 and the second has values

around 0.47 (see Fig. 4.12). The configurations with higher values consist of

two half spheres (see Fig. 4.13(a) ), the others look like entangled structures

(see Fig. 4.13(b) ). Obviously the entangled structure has a shorter distance

between the single chain centers of mass than the configuration in the half sphere

structure. But the energy of the half sphere configurations is a little smaller

(≈ 0.1) than the others. There are also intermediate states between these two

extrema, these arise from the interaction of the random coils of configurations

at higher energy, but a classification of those is not possible. A more detailed

picture of the lowest energy area from Fig. 4.10 can be seen in Fig. 4.12, where

also a peak of an intermediate structure can be observed.

4.3.3 Dependence on the Size of the Periodic Box

To be certain that the aggregation effects and thermodynamics do not depend

so much on the box we tried different box sizes. Normally, we set Lbox = 40,

but we also used half and twice of this length. With doubling the length the
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(a) (b)

Figure 4.13: (a) Configuration with the structure of two half spheres having the energy

E = −18.34 and Γ = 0.8. (b) Configuration with the entangled structure having the energy

E = −18.27 and Γ = 0.47.

volume gets bigger by a factor 8, so the volume of Lbox = 80 was 64 times bigger

than the box of Lbox = 20.

First, the thermodynamics was checked (see Fig. 4.14). The thermodynamics

in a single phase was equal for all sizes, but in the region of the phase transition

(T ≈ 0.2) small deviations appear. These come mainly from the very different

probabilities (see Fig. 4.15) of the chains to find each other. The difference be-

tween the minimum and maximum in the canonical histogram (see Fig. 4.11(a) )

is much bigger2. So we see that the behavior of a system which does not change

the phase is the same for all box sizes. But for a system which does a transition

between the phases, the thermodynamics changes a bit for the different box

sizes. A small variation of the box size will not change the thermodynamics

very much, but in our studies we increased the volume by a factor 8 and 64.

The finite-size scaling of the deviation of the aggregation parameter works

quite well, but 3 points is too small to obtain an accurate scaling law. Obviously

for all 3 box sizes the limit of the normalized aggregation parameter Γ/Lbox for

higher temperatures is 0.25, which is the proposed value as it will be calculated

in Sect. E.4. The small deviation from this value results from the fact that the

polymers are real particles and have a dilatation. The deviation is of the order

of the radius of gyration of single chains, which shortens the accessible area.

2 Often the logarithm of the ratio of the probabilities at the minimum and the maximum,

ln(Pmin/Pmax) is called interface tension, which has a special scaling behavior and was one

reason for the invention of multicanonical simulation [14].
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Figure 4.14: Thermodynamics of twice Seq. 13.1 for different box sizes. (a) Mean value of

energy normalized on the number of monomers (e = E/NG) for twice Seq. 13.1. (b) Specific

heat for twice Seq. 13.1. (c) Aggregation parameter Γ for twice Seq. 13.1 normalized on the box

length Lbox. (d) The derivation of the aggregation parameter for twice Seq. 13.1 normalized

on the box length Lbox. In all plots small variations can be seen around temperature T = 0.2,

which is also the transition temperature from fragmented to aggregated phase.

We also compared the multicanonical distribution of energy and aggregation

parameter, which can be seen in Fig. 4.15. It is obvious that the two phases

still have a sink between each other, but the phases are not equally distributed

anymore. For smaller box lengths the aggregated phase is more dominating,

also for a larger box length the fragmented phase is dominating. This is a hint

to the fact that the only thing which is changing for varying box size is the be-

havior close to the phase transition, because the probabilities for this transition

are changing. The smallest box size also leads to problems with the stretched

configuration. It would be possible to put two stretched configurations beside

each other, but not behind each other. So an unfolding of the complete system

is not possible in every direction. We have to mention that these stretched

configurations play a less important role for the thermodynamic properties.

4.3.4 Homopolymers

To understand the essentials behind the process of aggregation we also investi-

gated aggregation of homopolymers of the same length. Because of the missing

of hydrophobic monomers we expected a different type of ground state devoid

of a hydrophobic core, but with a maximum of optimal distances between the
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Figure 4.15: Multicanonical distribution of twice Seq. 13.1 for different box sizes. (a)

Lbox = 20 shows a small fragmented phase (high values of Γ). (b) Lbox = 40 shows a

equipartition between the fragmented and aggregated phase. (c) Lbox = 80 shows a small

aggregated phase (low values of Γ).
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Figure 4.16: (a) The specific inner energy and heat capacity of twice Seq. A13. (b) The

mean of the aggregation parameter Γ and its fluctuation of 2 x sequence a13. The peak in

the heat capacity at T ≈ 1 comes from the aggregation transition. The other peak at T ≈ 0.2

should mark the collapse to the ground state.

monomers, as it was also the case for solvent simulations (see Sect. 4.2).

We performed a multicanonical simulation with 115 recursions of 105 sweep

sequences and a final simulation with 107 sweep sequences to obtain the thermo-

dynamics shown in Fig. 4.16. The results were also cross-checked with parallel

tempering and multicanonical replica exchange, which show no significant devi-

ation.

The specific heat (see Fig. 4.16(a) ) has two peaks which show that the transi-

tion (T ≈ 1) from fragmented to aggregation phase and the transition (T ≈ 0.2)

from random coil to folded phase does not happen at the same temperature.

For the transition at high temperature the derivation of aggregation parameter

also shows a peak (see. Fig. 4.16(b) ), which clearly identifies this transition.

For the first peak it is not that easy, but we think this is a transition to the

folded phase due to the other kind of ground state (see Fig. 4.17).

As for heteropolymers the pathway to the ground state is similar, they ag-

gregate before they collapse to a compact configuration. In contrast to the

heteropolymer ground states which have a hydrophobic core, these configura-

tions have a “well”-like structure [54] like the singe chains, with a stretched part

inside and a surrounding helix (see Fig. 4.17). And the fold to this ground state
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Figure 4.17: The configuration of twice

Seq. A13 with the lowest energy found in a

multicanonical simulation with 107 sweep se-

quences. This shows some “well” like struc-

ture with a stretched part inside and a sur-

rounding helix.

is a large structural change in comparison to the random coil phase.

4.3.5 Microcanonical Interpretation

In this section, we analyze the aggregation transition from the microcanonical

perspective [56]. The multicanonical simulations give a sufficiently nice estima-

tor for the density of states Ω(E) which is also the microcanonical partition

function supplying the key to all microcanonical information.

The microcanonical entropy is defined as3:

S(E) = kB ln Ω(E) , (4.5)

where the Boltzmann constant was set to one due to Sect. 3.1. Due to the first

fundamental law of thermodynamics

dU = TdS − pdV (4.6)

the first derivation of the entropy is the inverse microcanonical temperature:

T−1(E) =
∂S(E)

∂E

∣∣∣∣
V,N

(4.7)

and the inverse microcanonical heat capacity:

c−1
V (E) =

∂T (E)

∂E

∣∣∣∣
V,N

(4.8)

= −T 2(E)
∂T−1(E)

∂E

∣∣∣∣
V,N

(4.9)

= −
∂2S(E)

∂E2

∣∣∣
V,N(

∂S(E)
∂E

∣∣∣
V,N

)2 . (4.10)

3 This is only true in the thermodynamic limit. The Hertz definition of the entropy is

S = kB ln Γ(E), where Γ(E) =
R

E<E′ dE g(E′) is the phase-space volume. In the thermody-

namic limit both definitions become equal, but for finite systems the two entropies are not

necessarily identical [57]. However, for our finite system we have checked out both definitions

and did not find noticeable deviations in the transition region.
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Figure 4.18: (a) The density of states Ω(E) ranges over around 100 order of magnitude.

(b) The microcanonical entropy shows a small dip in the energy range −8.85 . . . 1.05 (also see

Footnote 3). The tangent has the slope of the inverse aggregation temperature T−1
agg ≈ 5.04.

(c) The inverse microcanonical temperature T−1(E) shows the characteristic backbending

effect. The dashed line is the inverse aggregation temperature T−1
agg(E), which is defined by

the area criterion A− = A+. (d) The inverse microcanonical specific heat has four zero points,

which are singularities in the specific heat. The limit for high and low energies is infinity, which

means the specific heat equals zero.

In the thermodynamic limit one would expect that S(E) is a concave function,

that is why T−1(E) is a monotonically decreasing function and ∂2S(E)
∂E2

∣∣∣
V,N

is

negative. So the microcanonical specific heat is always positive, which is a well-

known fact.

But there are several finite systems which show opposite behavior in certain

energy regions. This phenomenon has long been known from astrophysical sys-

tems [58] and spin systems on finite lattices [59, 60], but also from experiments

with sodium clusters [61].

We also observed this convex behavior of the density of states for a system

with two polymers with Seq. 13.1 [56]. The density of states was an outcome

of a multicanonical simulation with 180 recursions and 108 sweep sequence to

accumulate reliable statistics. The results are shown in Fig. 4.18(a).

The most interesting region

Eagg ≈ −8.85 ≤ E ≤ 1.05 ≈ Efrag (4.11)

can be found in Fig. 4.18(b), where also the concave hull is shown. This hull
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Figure 4.19: (a) The histogram of twice Seq. 13.1 at T = 0.198, which is the aggregation

temperature obtained by the Gibbs construction (see Fig. 4.18(b)). Obviously the two peaks

have the same height. (b) The histogram at T = 0.178, which is the second transition

temperature from the fragmented to meta stable phase (see the dip in A+ at Fig. 4.18(c)).

The peak at lower energies from (a) can not be seen in this plot.

is called Gibbs construction and has the slope of the inverse aggregation tem-

perature T−1
agg ≈ 5.043. The two intersection points of the Gibbs line and the

entropy are called Eagg and Efrag. The interval

∆Q = Efrag − Eagg − Tagg (S(Efrag)− S(Eagg)) ≈ 9.90 (4.12)

is the latent heat required to release inter-chain contacts at the aggregation

temperature Tagg. The first derivative is the inverse temperature shown in

Fig. 4.18(c) again together with T−1
agg, which is not just a constant line. The

inverse temperature function gives the definition of T−1
agg by an area criterion:

T−1
agg is the temperature where A− is equal to A+. This is the so called Maxwell

line. We determined Tagg to be around 0.198, which is near to the value we

found with the canonical calculations (see Sect. 4.3.2 on page 44). The inverse

temperature shows the backbending effect, which is typical for a first-order-like

phase transition. Normally, this effect vanishes in the thermodynamic limit, but

because of the lack of a limit for heteropolymers it does not vanish here. This

special behavior of the inverse temperature leads to a negative specific heat as

a function of energy (see Fig. 4.18(d) ), which is a little bit “exotic”.

But the more important point of the backbending effect is the loss of the

temperature as an external control parameter. The interpretation of the canon-

ical formalism in that region is not generic. The canonical formalism makes

sense for a monotonic increasing inverse microcanonical temperature, because

for this case mapping from temperature to energy and backwards is unique. In

temperature regions of the aggregation this is violated. In simple words it means

that in certain temperature regions the system gains energy by cooling. Also

the obtained aggregation temperature Tagg can be used to find a reweighted

canonical histogram with equal peak heights (see Fig. 4.19(a) ).
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Obviously in Fig. 4.18(c) there is a second transition in the area A+ (close

to E ≈ −0.32), which has a transition temperature of Tagg,2 ≈ 0.178, which can

easily be overlooked in a canonical calculation.

For energies close to Efrag the system is in a fragmented state, and the pop-

ulation of aggregated polymers in this energy region is extremely small. The

situation is different for energies E < 0.22 (see Fig. 4.19(b) ), where weakly

stable aggregated conformations and polymer fragments coexist. Only for much

smaller energies (E < Eagg), compact aggregates dominate. Having this in

mind, the transition can also be understood from the canonical view. For

temperatures below Tagg,2 ≈ 0.178, stable aggregates (solids) of low energies

(E < Eagg) dominate. Approaching Tagg,2, the system enters the subphase

of coexisting unstable pre-molten aggregates of comparatively high energies

(E ≈ −0.32) and already fragmented polymers.

Compared with the distribution at the aggregation transition in Fig. 4.19(a),

the ratio between maximum and minimum is small and, therefore, also the in-

terface tension. In consequence, the transition between the solid and the pre-

molten, unstable aggregates is, compared to the aggregation transition, negligi-

bly weak. It should be noted that the peak of the aggregation phase, not shown

in Fig. 4.19(b), is much more pronounced than the peaks of the pre-molten

aggregates near E ≈ −0.32 and the fragments close to E ≈ 0.73.

We have also observed these subphases in the studies of the pathways of the

aggregation event. As mentioned in Sect. 4.3.2 on page 45 the single chains first

unfold completely before aggregating.

4.4 Three and More Chains

The studies of three and more chains are a little shortened in this thesis for

several reasons. First we have not done as much cross-checks as for two chains.

Secondly the simulations for more chains need a much bigger effort of computer

time. The number of single updates scales with the square of number of chains

(see Eqn. (3.6) ) and the number of distances in the Lennard-Jones energy (see

Eqn. (2.5) ) also scales with the square of number of chains. But the results in

the following section can be trusted anyway.

4.4.1 Triple Sequence 13.1

We simulated a three chain system in the same way as for two chains, we only

changed the sequence of updates (see Table 3.2), but nothing else.

With the help of a multicanonical simulation we found some similar behavior

in the thermodynamics (see Fig.4.20) as for two chains (see Fig. 4.8). This
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Figure 4.20: (a) The specific inner energy and heat capacity of 3 × Seq. 13.1. (b) The mean

of the aggregation parameter Γ and its fluctuation of 3 × Seq. 13.1. The specific heat as well

as the derivation dΓ/dT of the aggregation parameter Γ have a peak at T = 0.2, which can

be explained by the transition from the fragmented to the aggregated phase. The similarity

to the thermodynamics of 2 × Seq. 13.1 (see Fig.4.8) is unmistakable.
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Figure 4.21: The canonical histogram at

T = 0.210 and T = 0.215. At higher temper-

ature the fragmented phase (right peak) is

dominating. The right wing of the left peak

shows a transition to the “2 of 3” aggregation.

The histogram of Γ looks like Fig. 4.11(b).

is confirmed by the fact that the thermodynamics strongly depends on the

sequence of monomers. But if the sequences of monomers are comparable, the

thermodynamics should be as well.

4.4.2 Type of Aggregation

The question is, how is the way of many body aggregation in comparison to

a system of two chains? For the two chains this question was senseless, but for

at least three chains it would be interesting if two chains will aggregate first

and then the third accrue or if all three aggregate in one step. For that reason

one can expect one or two peaks in the derivation of the aggregation parameter,

but there is only one (see Fig. 4.20(b) ). This is the first hint that there is only

one transition from the fragmented to the aggregated phase, but as mentioned

above (see Sect. 4.3.5) sometimes there are small dips which could easily be

overlooked.

However, from Fig. 4.20 we extracted the transition temperature to be

around T ≈ 0.2. A canonical simulation at the transition region confirmed this

hint. The histogram (see Fig. 4.21) shows a straight transition from fragmented

to aggregated phase. A temperature change from T = 0.210 to T = 0.215 let the
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Figure 4.22: (a) Specific heats for different number of chains of Seq. 13.1. (b) The maxima

of the specific heat show an increasing behavior with the number of chains, but a clear law

is not visible. (c) The derivation of the aggregation parameter dΓ/dT for different amounts

of Seq. 13.1. (d) The maxima of dΓ/dT also show an increasing behavior with the number of

chains, but three points are to few to obtain a scaling law.

dominating phase go from aggregated to fragmented phase. The intermediate

“2 of 3” phase exists, but never alone. This intermediate phase can be seen in

the left wing of the right peak of Fig. 4.21. This concludes in the fact that the

aggregation of three chains goes through an intermediate phase, but this phase

is never dominating.

4.4.3 Scaling

Obviously the height of the peaks of the heat capacity (see Fig. 4.22(a) ) and

derivation of the aggregation parameter (see Fig. 4.22(c) ) is increasing with

the number of chains, so we tried to obtain a scaling law (see Fig. 4.22(b)

and Fig. 4.22(d) ) for which we made multicanonical simulations of comparable

lengths with one, two, three and four times Seq. 13.1. Because of the great

effort of computer time for four chains it was not possible to obtain satisfying

data for more chains.

But the number of points is much too small to identify a scaling law correctly.

However, any obtained scaling law cannot be trusted, because reasonable finite-

size scaling cannot be performed with small numbers of chains4.

4 The common scaling law is cV,max ∼ Lα/ν , but for small L there is a correction term
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4.4.4 Additional Studies

Additionally we studied homopolymer systems with 3 and 4 chains, but as

mentioned above (see Sect. 4.3.4) the ground states always have a structure

like a “well”. This structural difference between the random coil phase and

the folded phase respectively the fragmented and aggregated phase leads to a

bigger barrier than for the heteropolymers. This barrier is more a technical

problem due to the updates. The acceptance ratio in the more compact phase

drops nearly to zero. For the spherical update only the end monomers have a

reasonable chance to be updated. This leads to higher autocorrelations in the

low temperature phase.

like cV,max = c0 + aLα/ν(1 + bL−ω) [62, 63], which can not be neglected. Anyway, there are

too many unknown parameters to perform a nice fitting.
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Summary

In this thesis we studied a simplified mesoscopic aggregation model for hydro-

phobic-polar peptides. In that model, a protein is just a chain of monomers of

type A or B, where A are hydrophobic monomers and B are polar or hydrophilic

monomers.

However, even for this simple model the complexity is high enough so that

common canonical Monte Carlo gave no satisfying results, that is why we used

more sophisticated generalized ensemble methods. The simplest one was the

multicanonical simulation technique, which changes the sampled distribution to

a flat one. Secondly, we used parallel tempering, which simulates multiple tem-

perature runs in parallel to shorten the autocorrelation time. Thirdly, the not

so common multicanonical replica exchange was used, which is a combination

of the both methods mentioned above.

The single-chain simulations with various methods showed that the physical

quantities of the chains strongly depend on the sequence of the chains. The

mean energy is always monotonically increasing with the temperature, which is

normal. In contrast, the specific heat showed, depending on the sequence, one

or two peaks of different height, which are caused by a transition between three

“pseudo” phases. The phase at high temperatures is dominated by stretched

configurations with random coils. With decreasing temperature the system

enters the globular phase. The third phase, at very low temperatures, is the

hydrophobic core region, where a core of hydrophobic monomers has formed.

The transitions can fall together as it happened for Seq. 13.1, which is the

central sequence studied in this work. The ground state was observed to have

a hydrophobic core and a hydrophilic surrounding.

Homopolymers showed a totally different kind of ground state conformations

due to the missing interaction between hydrophobic and hydrophilic monomers.

They exhibited a “well”-like structure with a stretched part in the middle and

57
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the onset of an outer helix.

As first sample for the aggregation study we took twice the Seq. 13.1 in

order to have a system with around 20 monomers, which can be simulated in

acceptable CPU times. For this system we found an aggregation transition in

the region of T ≈ 0.2. The ground state is observed to lie in the aggregation

phase and to have a global hydrophobic core, like the single-chain ground state.

We first introduced periodic boundary conditions, which were also tested to

not contain any systematic errors in single-chain simulations. This boundary

condition was chosen to increase the probability of the single chains to find each

other. We have not used fixed boxes to avoid effects resulting from the hard

walls. The dependence on the size of the box was also studied and it turned out

that there are only small variations in the region of the aggregation due to the

different probabilities of the single chains to find each other.

The aggregation transition is indicated by a peak in the specific heat. We

defined the aggregation parameter as the radius of gyration of the centers of

mass of the single chains. The centers of mass are measured with respect to

the first monomer of the chain due to the periodic boundary condition. This

parameter behaved like a common order parameter, its derivative showed a

peak at the same temperature (T ≈ 0.2) as the specific heat. Higher values are

connected to the fragmented phase and higher energies. And low values belong

to the aggregated phase.

The transition itself is first-order like which can be seen from the distribution

of energies and the distribution of the aggregation parameter. These distribu-

tions showed the well-known double-peak structure. Due to only one peak in

the specific heat the transition from the random coils to the hydrophobic core

region and the aggregation transition nearly fell together.

A microcanonical analysis was used to identify the transition temperature.

Surprisingly, the analyses showed a second transition at a little higher temper-

ature. This was identified to be a transition from random coil to a metastable

phase which does not have a global hydrophobic core. This transition is so weak

that it would have been easily overlooked in canonical analyses. This also led

to the detection that the single chains have to unfold first before aggregation,

which was also observed in canonical analyses.

In contrast to heteropolymers, the transition from random coil to hydro-

phobic core region and the aggregation transition for homopolymers did not fall

together for this category of polymers. The aggregation transition is at a much

higher temperatures than the other transition, which came from the fact that

the structural difference between the ground state and the random coil phase

was much bigger for homopolymers than for heteropolymers.

We also studied three and more heteropolymer chains which showed an equal
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aggregation transition. We found that the transition takes place in one step,

the phase with “2 of 3” chains aggregated is never dominating, thus we came to

the conclusion that there is only one transition from fragmented to aggregated

phase. In a finite-size-scaling analysis we showed that the size of the peaks

grows with the system size, but a scaling law could not be obtained due to the

small number of chains.

Simulating three and more homopolymers was more demanding, because

of the much bigger structural difference to the ground state, which also has

a “well”-like structure. However, the aggregation transition did not fall together

with the transition between random coil and compact phase.

There are still a lot of interesting open questions concerning these topics

for a future work. The transitions of single chains are not completely under-

stood, especially the dependence on the sequence of monomers. A small-scale

microcanonical analysis also showed a first-order like transition.

Most parts of the aggregation process are well understood, but aspects con-

cerning the aggregation pathway have to be researched in more details. Also the

study of bigger systems and systems with more sequences would be interesting.

Improved methods with shorter autocorrelation time have to be used to

study homopolymers to obtain sufficient statistics. Because the “well”-like

structure will stay for even bigger systems this will make the simulations more

and more difficult.

Finally, a study of more than four chains would be desirable to obtain the

scaling law more accurately and to understand the process of forming a hydro-

phobic core.
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Appendix A

Details about the Updates

A.1 Spherical Update

The old vector ~r is given by:

~r =




x

y

z


 = r~er , (A.1)

where

~er =
1

r




x

y

z


 (A.2)

and r is the spherical radius

r =
√

x2 + y2 + z2 . (A.3)

Perpendicular to this vector one can choose two other vectors

~eϕ =
1√

x2 + y2



−y

x

0


 (A.4)

and

~eϑ =
~er × ~eϕ

|~er × ~eϕ|
=

1

r
√

x2 + y2




−xz

−yz(
x2 + y2

)


 . (A.5)

Because these three vectors make an orthonormal system one can write the new

vector ~r ′ in terms of this:

~r ′ = a~er + b~eϑ + c~eϕ (A.6)
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Figure A.1: The spherical sector with the local coordinate system ~er, ~eϕ, ~eϑ and the angle

changes ∆ϑ, ∆ϕ.
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Figure A.2: The length along the ~er direction is r cos ∆ϑ and the distance in the plane of

~eϕ and ~eϑ is r sin ∆ϑ.

with the constraint

|~r ′| = |~r| = r . (A.7)

As the angle between ~r and ~r ′ is defined to be ∆ϑ (see Fig. 2.5)

~r · ~r ′ = r2 cos∆ϑ = ar (A.8)

one gets:

a = r cos∆ϑ . (A.9)

For better understanding see Fig. A.1. The factors b and c can be distinguished

with the help of Fig. A.2 and Fig. A.3.

So the new vector ~r ′ is given by:

~r ′ = r cos∆ϑ~er + r sin ∆ϑ sin ∆ϕ~eϕ + r sin ∆ϑ cos∆ϕ~eϑ . (A.10)

The problem appears for x = y = 0 because then ~eϑ and ~eϕ are not well
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Figure A.3: The length along the ~eϑ direction is r sin∆ϑ cos ∆ϕ and along the ~eϕ direction

r sin∆ϑ sin∆ϕ.

defined. A solution is to use two other base vectors in a coordinate system:

~eϕ =
1√

x2 + z2




z

0

−x


 (A.11)

and

~eϑ =
~er × ~eϕ

|~er × ~eϕ|
=

1

r
√

x2 + z2




−xy(
z2 + x2

)

−yz


 (A.12)

and the new vector ~r ′ is defined equally:

~r ′ = r cos∆ϑ~er + r sin ∆ϑ sin ∆ϕ~eϕ + r sin∆ϑ cos ∆ϕ~eϑ . (A.13)

A.2 Rotation Update

The matrix R for rotation of angle α around a axis ~v with components

~v =




v1

v2

v3


 (A.14)

with

|~v| = 1 (A.15)

is given by:

Rij = vivj + cosα(δij − vivj) + sin αǫiljvl (A.16)

which can also be written as:

R =




cos α+v2
1(1−cos α) v1v2(1−cos α)−v3 sin α v1v3(1−cos α)+v2 sin α

v2v1(1−cos α)+v3 sin α cos α+v2
2(1−cos α) v2v3(1−cos α)−v1 sin α

v3v1(1−cos α)−v2 sin α v3v2(1−cos α)+v1 sin α cos α+v2
3(1−cos α)




(A.17)
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To proof that this is a rotation matrix, one just has to show that:

R ·RT = 1 (A.18)

where

RT
jk = vjvk + cosα(δjk − vjvk) + sin α(ǫkmjvm) . (A.19)

This calculation is done in detail in Sect. E.1. In the case of the rotation update

the axis ~v is

~v =
~rj−1 − ~rj+1

|~rj−1 − ~rj+1|
. (A.20)

The next connection vector ~r = ~rj−~rj−1 is rotated by a random angle α ∈ [0, 2π)

around this axis. So the new connection vector is given by:

~r ′
j = R(~v, α)~r + ~rj−1 . (A.21)



Appendix B

The Multicanonical

Recursion

The idea is as follows: Normally, in the beginning, all multicanonical weights

are set to 1. A “short” simulation is done, and the weights are updated by:

Wmuca(E) ∝ 1/Ω(E) ∝ 1/H(E) . (B.1)

This is useful because the histogram of a random simulation is naturally an

estimator for the density of states which is inverse proportional to the multi-

canonical weights (Eqn. (2.51) ).

Then another “short” simulation is done and from the gained histogram

more accurate weights are calculated by:

Wmuca
n+1 (E) =

Wmuca
n (E)

Hn(E)
. (B.2)

This is the “naive” recursion. The better way is to add the old weights and

the new weights according to their errors. This is the so called multicanon-

ical recursion. To derive the formula a little more notation (motivated by

W. Janke [33, 34]) has to be introduced.

The histogram of the nth recursion is called Hn(E) and the weights are

Wmuca
n (E). Now we can introduce the ratio of the weights of the neighboring

energy bins Rn(E). (If the energy is not discrete, binning will be necessary

anyway.)

Rn(E) =
Wmuca

n (E + ∆E)

Wmuca
n (E)

. (B.3)

After the nth recursion step a more accurate estimator for the multicanonical

weight is given by:

W̃muca
n+1 (E) =

Wmuca
n (E)

Hn(E)
. (B.4)
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The corresponding ratio of the neighbors is:

R̃n+1(E)
(B.3)
=

W̃muca
n+1 (E + ∆E)

W̃muca
n+1 (E)

(B.4)
=

Wmuca
n (E + ∆E)

Wmuca
n (E)

Hn(E)

Hn(E + ∆E)
. (B.5)

After taking the logarithm this simplifies to:

ln R̃n+1(E) = lnRn(E) + ln

(
Hn(E)

Hn(E + ∆E)

)
. (B.6)

The neighboring ratios for the (n+1)th recursion should be calculated by adding

lnRn(E) and ln R̃n+1(E) weighted with their errors:

lnRn+1(E) = κn(E) ln R̃n+1(E) + ξn(E) lnRn(E) , (B.7)

where κn(E) is inverse proportional to the square of the error of ln R̃n+1(E)

κn(E) ∝ 1/ǫ2
ln R̃n+1(E)

= qn(E) (B.8)

and ξn(E) is inverse proportional to the sum of the square of the errors of all

previous estimators of lnR(E)

ξn(E) ∝ 1/

n−1∑

i=1

ǫ2ln Ri(E) = pn−1(E) . (B.9)

Eqn. (B.8) can also be written as

κn(E) = aqn(E) (B.10)

and Eqn. (B.9) as

ξn(E) = bpn−1(E) . (B.11)

For reasons of normalization

κn(E) + ξn(E) = 1 (B.12)

has to be satisfied. A solution for these three equations is

a = b =
1

qn + pn−1
=

1

pn
. (B.13)

Everything is inserted in Eqn. (B.7):

lnRn+1(E)
(B.12)

= (1− κn(E)) ln Rn(E) + κn(E) ln R̃n+1(E) (B.14)

(B.6)
= lnRn(E) + κn(E) ln

(
Hn(E)

Hn(E + ∆E)

)
(B.15)

(B.13)
= lnRn(E) +

qn(E)

pn(E)
ln

(
Hn(E)

Hn(E + ∆E)

)
. (B.16)
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So the only thing missing is the estimation of the error ǫln R̃i+1(E), because it is

necessary for qn(E) and pn(E) (see Eqn. (B.8) and Eqn. (B.9) ):

ǫ2
ln R̃i+1(E)

(B.6)
= ǫ2(ln Ri(E))︸ ︷︷ ︸

=0

+ǫ2(lnHi(E + ∆E)) + ǫ2(lnHi(E)) . (B.17)

The first term on the r.h.s. vanishes because Ri(E) was fixed during the nth

recursion. The other terms can easily be calculated by assuming that the a priori

error of the histogram Hi develops with the number of entries
√

Hi(E):

ǫ2 (lnHi(E)) =

(
∂ lnx

∂x

∣∣∣∣
x=Hi(E)

ǫ(Hi(E))

)2

(B.18)

=

(
1

Hi(E)
· ǫ(Hi(E))

)2

(B.19)

=

(√
Hi(E)

Hi(E)

)2

(B.20)

=
1

Hi(E)
. (B.21)

So finally we get:

ǫ2
ln R̃i+1(E)

(B.17)
= ǫ2(lnHi(E + ∆E)) + ǫ2(lnHi(E)) (B.22)

(B.21)
=

1

Hi(E + ∆E)
+

1

Hi(E)
(B.23)

=
Hi(E + ∆E) + Hi(E)

Hi(E + ∆E)Hi(E)
. (B.24)

One could argue, that for Hi(E) = 0 or Hi(E + ∆E) = 0 a singularity appears,

but then qn(E) will vanish due to the fact that ǫ2 is infinity. So there is no real

problem. The complete formula can be found in Sect. 2.4.3 on page 19.
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Appendix C

Multi-Histogram

Reweighting

This derivation is motivated by A.M. Ferrenberg und R.H. Swendsen [41, 42].

After performing k canonical simulations (sequential or in parallel) at k different

temperatures one gets k histograms Hi(E) with i = 1, . . . , k. The distribution

on the ith simulation at a fixed temperature Ti is given by:

Hi(E) ∝ Pcan(E, Ti) = αiHi(E) . (C.1)

The missing constant αi can be obtained by summing up both sides:
∑

E

Pcan(E, Ti) =
∑

E

αiHi(E) (C.2)

Z(Ti) = αiNi , (C.3)

where Z(Ti) is the (unknown) partition function at temperature Ti and Ni is

the number of entries in the ith histogram. An estimator for the density of

states Ω(E) out of the ith simulation is given by:

Ωi(E)
(2.45)
= Pcan(E, Ti)e

E/Ti (C.4)

(C.1)
= αiHi(E)eE/Ti (C.5)

(C.3)
= Hi(E)Z(Ti)Ni

−1eE/Ti . (C.6)

A much better estimator can be obtained by using the statistics of all k simu-

lations, so we add them weighted inverse to their error:

Ω̂(E) =

k∑

i=1

Wi(E)Ωi(E) , (C.7)

where

Wi(E) ∝ 1/ǫ2(Ωi(E)) (C.8)
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and the normalization
N∑

i=1

Wi(E) = 1 (C.9)

has be to fulfilled. A solution is

Wi(E) =
1/ǫ2(Ωi(E))

∑k
i=1 1/ǫ2(Ωi(E))

. (C.10)

The error of Ω at the energy E can easily be calculated by assuming that the

error of the histogram Hi at energy E grows with the square root of the number

of entries
√

Hi(E):

ǫ(Ωi(E))
(C.6)
= ǫ(Hi(E)Z(Ti)Ni

−1eE/Ti) (C.11)

= Z(Ti)Ni
−1eE/Tiǫ(Hi(E)) (C.12)

= Z(Ti)Ni
−1eE/Ti

√
Hi(E) (C.13)

(C.6)
=

Ωi(E)√
Hi(E)

(C.14)

So the estimator Ω̂(E) can be calculated out of Eqn. (C.7):

Ω̂(E)
(C.10)

=

∑k
i=1 1/ǫ2(Ωi(E))Ωi(E)
∑k

i=1 1/ǫ2(Ωi(E))
(C.15)

(C.14)
=

∑k
i=1

Hi(E)
Ωi(E)2 Ωi(E)

∑k
i=1

Hi(E)
Ωi(E)2

(C.16)

=

∑k
i=1

Hi(E)
Ωi(E) Ω(E)

∑k
i=1

Hi(E)
Ωi(E)2 Ω(E)

(C.17)

≈
∑k

i=1 Hi(E)
∑k

i=1
Hi(E)
Ωi(E)

(C.18)

(C.6)
=

∑k
i=1 Hi(E)

∑k
i=1 NiZ−1(Ti)e−E/Ti

(C.19)

The unknown partition function can be calculated self-consistently

Z(Tk) =
∑

E

Ω̂(E)e−E/Tk
(C.19)

=
∑

E

e−E/Tk

∑
i Hi(E)∑

i NiZ−1(Ti)e−E/Ti
. (C.20)



Appendix D

Usage of ABSimT

ABSimT is the short form of “AB Simulation Tools”. This package of programs

can be used to reproduce the data of this thesis completely. The programs are

written in C [64] and the source code is freely available [65].

D.1 Function Overview

The functions are modular, most routines were used by different main programs.

The methods implemented are:

• Canonical simulation

• Multicanonical simulation

• Energy-Landscape-Paving

• Parallel tempering

• Multicanonical replica exchange

• Analysis of all of the above by:

– Histogram analysis

– Time series analysis

– Error estimation with Blocking-Jackknife method

On the one side we wanted to keep the program as simple as possible to easily

allow changes of the model and the updates. On the other hand we wanted to

keep the program free of doublings.

All kinds of simulation use the same update procedure system update()

which chooses the needed weight automatically and allows several types of up-

dates (see Sect. D.5.3).
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Directory Kind of simulation and comment

ABcan canonical simulation

ABcan analy histogram analysis of ABcan

ABcan analy time timeseries analysis of ABcan

ABcan p parallel tempering simulation (swap temperatures)

ABcan p analy time timeseries analysis of ABcan p

ABcan p2 parallel tempering simulation (swap configuration)

ABcan p2 analy histogram analysis of ABcan p2

ABcan p2 analy time timeseries analysis of ABcan p2

ABelp ELP simulation

ABinit init-file maker

ABlib procedure library

ABmuca multicanonical simulation

ABmuca analy histogram analysis of ABmuca

ABmuca analy time timeseries analysis of ABmuca

ABnuca p multicanonical replica exchange simulation

ABmuca p analy histogram analysis of ABmuca p

ABmuca p analy time timeseries analysis of ABmuca p

ranMARS random number generator library [17]

Table D.1: The directory structure of the ABSimT package.

D.2 Structure Overview

The main directory displays the structure as shown in Table D.1 which includes

the three single-CPU programs ABcan, ABmuca and ABelp and the three paral-

lel programs ABcan p, ABcan p2, ABmuca p for which a working installation of

MPI [66] is necessary.

All programs except ABelp and ABcan p have a histogram analysis routine

which is denoted by the program name plus the ending analy. For the ELP

simulation ABelp an analysis is not necessary because the only useful outcome

is the configuration with the lowest energy found and the histogram of energies

which does not need to be analyzed.

Parallel tempering has two implementations, one which exchanges the tem-

peratures and one which exchanges the configuration. The first does not need

any histogram analysis, because counting histograms for a fixed temperature

would be an additional effort of computer time.

Additionally, every program except ABelp has a timeserie analysis routine

ending with analy time.
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The remaining items are the global ABSimT library ABlib, the random

number generator library ranMARS [17] and the init-file creator ABinit.

D.3 How to Do a Simulation

One has to choose the kind of simulation (canonical, multicanonical or ELP)

and with this the associated version of implementation (serial or parallel) can

be chosen according to the available computers.

Then one has to create an appropriate init-file by hand or by using ABinit

(see Sect. D.4). The init-file should be given as first parameter to the program.

The simulation does backup at reasonable points, like the end of a recursion

run or the end of a thermalization run, which makes it possible to restart aborted

or crashed simulations.

After the simulation on should run the associated analysis program to cal-

culate the common mean values like energy, specific heat and aggregation pa-

rameter. The common filenames can be change in the library ABlib.h (see

Sect. D.5.1).

D.4 How to Create an Init-File

The init-file contains the essential information for the program. In general, the

init-file is named init plus the program name, but any other init-file can be

given as first parameter of the main program. A list of the required options in

correct order can be found in Table D.2. Another option is to use the init-file

maker ABinit, which is the best way to create the first init-file, but this would

be a bit complicated for single-option change.

D.5 Technical Details

This section is just for people who want to understand the way of programming

or want to change the source code, basically, to simulate another model.

D.5.1 ABlib

The library ABlib.h contains all routines used by the main programs. The

detailed functions of the routines are documented in the source code.

The routines are sorted in four groups. The first group are the “elementary”

functions like scalar product and lengths. The second group are functions of

the standard variables, e.g. input and output of the histograms and weights.

The next group contains all kind of update routines and their subroutines (see
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Parameter Comment Used for simulation

E start Min. energy of the histogram All

E end Max. energy of the histogram All

delta E Energy difference of the histo-

gram

All

size Number of processes ABcan p, ABcan p2,

ABmuca p

T Temperature All except ABcan p,

ABcan p2, ABmuca p

T00, T01,. . . Temperatures ABcan p, ABcan p2,

ABmuca p

L rec Length of recursion or thermal-

ization run

All except ABelp

nr start Number of start recursion ABmuca, ABmuca p

nr rec Number of recursion to do ABmuca, ABmuca p

L final Length of final run All

r cut Cutoff radius for contact mea-

surement

All

L seq Length of update sequence All

seq upd Sequence of updates All

seq poly Sequence of polymers to update All

Nr polys Number of polymers All

poly00,poly01,. . . Sequence of polymers All

Table D.2: Parameters in the init-file on ABSimT.

Sect. D.5.3). The last group is the polyconf group, which provides all func-

tions for the polymer configuration, like measurement, input and output. The

polyconf type is explained in the next section.

D.5.2 Global Variables

Some variables are defined globally to make them accessible in every part of the

program. The global variables vary with the kind of simulation, but in general

the list of the configurations (polylist), all simulation parameters (parameter)

and the histogram of energies (E histo) are global. For multicanonical simula-

tions additionally the weights (lnW) are global.

The list of polymers is a new defined type of variable. From the technical

point of view it is an array of polymers, which is also a new defined variable.

A polymer itself is defined as an array of monomers, where a monomer is a struct
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which includes a 3D vector and the type of the monomer. We think that this is

the natural way of building up a system of multiple chains.

D.5.3 Main Update Function

The heart of every simulation is the update routine, which should be highly

optimized. The procedure system update() automatically chooses the weight

according to the kind of simulation. The new configurations are created by the

procedure allupds polyconf(), which also calculates the energy difference.

This is much faster than calculating the complete energy of the system. One of

the arguments, which are passed to the function, are the consecutive number

of the update sequence (seq upd) and of the sequence of the polymer to be

updated (seq poly) which can be defined in the init-file (see Sect. D.4). This

number (see table 3.1) allows to choose one of the following updates:

• Spherical update

– Forward

– Backward

• Rotation update

• Move update

• “Nothing” update

D.5.4 Further Details

The source code of ABlib.h is very well documented and can be understood

quiet easily. Several example simulations of Seq. 13.1 were added to the package

to test the functionality. We hope to publish a detailed documentation and

manual of the project soon on the homepage [65].
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Appendix E

Calculations

E.1 Rotation Matrix

Eqn. (A.16) gives:

Rij = vivj + (δij − vivj) cosα + ǫiljvl sin α (E.1)

RT
jk = vjvk + (δjk − vjvk) cosα + ǫkmjvm sin α , (E.2)

with (see Eqn. (A.15))

vivi = 1 (E.3)

We evaluate:

RijR
T
jk = vivk + (vivk − vivk︸ ︷︷ ︸

=0

) cosα + (ǫkmjvmvj︸ ︷︷ ︸
=0

vi) sinα (E.4)

+(vivk − vivk︸ ︷︷ ︸
=0

) cosα + (δij − vivk) cos2 α

+(ǫkmivm − ǫkmjvmvj︸ ︷︷ ︸
=0

vi) sin α cosα

+(ǫiljvlvj︸ ︷︷ ︸
=0

vk) sin α + (ǫilkvl − ǫiljvlvj︸ ︷︷ ︸
=0

vk) sin α cosα

+(

δikδlm−δimδlk︷ ︸︸ ︷
ǫiljǫkmj vlvm︸ ︷︷ ︸

δik−vivk

) sin2 α

= vivk + (δik − vivk)(cos2 α + sin2 α︸ ︷︷ ︸
=1

) (E.5)

+(ǫkmi +

=−ǫkmi︷︸︸︷
ǫimk︸ ︷︷ ︸

=0

)vm sin α cosα

= vivk + δik − vivk (E.6)

= δik (E.7)
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E.2 Radius of Gyration

rgyr
2 =

1

N

N∑

i=1

(~ri − ~rM )
2

(E.8)

=
1

N

N∑

i=1

(~ri · ~ri − 2~ri · ~rM + ~rM · ~rM ) (E.9)

=
1

N

(
N∑

i=1

~ri · ~ri

)
− ~rM ·

(
2

N

N∑

i=1

~ri − ~rM
1

N

N∑

i=1

1

)
(E.10)

=
1

N

(
N∑

i=1

~ri · ~ri

)
− ~rM · (2~rM − ~rM ) (E.11)

=
1

N

(
N∑

i=1

~ri · ~ri

)
− ~rM · ~rM , (E.12)

which is the last global representation of the radius of gyration.

rgyr
2 =

1

N

(
N∑

i=1

~ri · ~ri

)
−
(

1

N

N∑

i=1

~ri

)2

(E.13)

=
1

2N




N∑

i=1

~ri · ~ri +
N∑

j=1

~rj · ~rj


 (E.14)

−
(

1

N

N∑

i=1

~ri

)
·


 1

N

N∑

j=1

~rj


 (E.15)

=
1

2N2

N∑

i=1

N∑

j=1

(~ri · ~ri + ~rj · ~rj)−
1

N2

N∑

i=1

N∑

j=1

(~ri · ~rj) (E.16)

=
1

2N2

N∑

i=1

N∑

j=1

(~ri · ~ri + ~rj · ~rj − 2~ri · ~rj) (E.17)

=
1

2N2

N∑

i=1

N∑

j=1

(~ri − ~rj)
2

, (E.18)

which is the relative representation of the radius of gyration.



E.3. THERMAL FLUCTUATIONS EQUATION 79

E.3 Thermal Fluctuations Equation

Eqn. (2.45) gives:

Ô(T ) =

∑
µ∈M Oµpµ

−1e−Eµ/kBT

∑
µ∈M pµ

−1e−Eµ/kBT
. (E.19)

We calculate:

dÔ

dT
=

dβ

dT

dÔ

dβ
(E.20)

= − 1

kBT 2

d

dβ

(∑
µ∈M Oµpµ

−1e−Eµ/kBT

∑
µ∈M pµ

−1e−Eµ/kBT

)
(E.21)

= −
d
dβ

∑
µ∈M Oµpµ

−1e−Eµ/kBT

kBT 2
∑

µ∈M pµ
−1e−Eµ/kBT

(E.22)

−
∑

µ∈M Oµpµ
−1e−Eµ/kBT

kBT 2
· d

dβ

(
1∑

µ∈M pµ
−1e−Eµ/kBT

)

= −
∑

µ∈M Oµ(−Eµ)pµ
−1e−Eµ/kBT

kBT 2
∑

µ∈M pµ
−1e−Eµ/kBT

(E.23)

−
∑

µ∈M Oµpµ
−1e−Eµ/kBT

kBT 2
· −
∑

ν∈M(−Eν)pν
−1e−Eν/kBT

(
∑

µ∈M pµ
−1e−Eµ/kBT )2

=

∑
µ∈M OµEµpµ

−1e−Eµ/kBT

kBT 2
∑

µ∈M pµ
−1e−Eµ/kBT

(E.24)

−
∑

µ∈M Oµpµ
−1e−Eµ/kBT

kBT 2
∑

µ∈M pµ
−1e−Eµ/kBT

·
∑

ν∈M Eνpν
−1e−Eν/kBT

∑
µ∈M pµ

−1e−Eµ/kBT

=
1

kBT 2

(
ÔE − Ô · Ê

)
. (E.25)
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Figure E.1: The area of integration can

be divided in three parts, the hatched parts

are the areas (|x − y| > 0.5) C and D. The

complete area is called A.

E.4 Two Particles in Periodic Box

The mean distance of two particles (~x, ~y ∈ B1, see Eqn. (3.8)) in a periodic box

can be calculated by:

〈~dper(~x, ~y)2〉 =

∫∫∫

B1

d3x

∫∫∫

B1

d3y ~dper(~x, ~y)2ρ(~x)ρ(~y) (E.26)

(3.9)
=

3∑

i=1

∫ Lbox

0

dxi

∫ Lbox

0

dyi dper
i (xi, yi)

2ρ(xi)ρ(yi) (E.27)

= 3

∫ Lbox

0

dx1

∫ Lbox

0

dy1 dper
1 (x1, y1)

2ρ(x1)ρ(y1) (E.28)

= 3〈dper
1 (x1, y1)

2〉 , (E.29)

where ρ(xi) = 1/Lper is the probability density of xi, which is just constant.

This intermediate result is not surprising, but shows the isotropy of the 3D

space. For simplicity we omit the subscript 1 and call the integration area A
in the next steps. We divide the integration area according to Fig. E.1 in three

parts due to the three different parts of the function dper(x, y) (see Eqn. (3.10)).

So Eqn. (E.29) simplifies to:

〈dper(x, y)2〉 =

∫∫

A

dxdy d(x, y)per(x, y)2ρ(x)ρ(y) (E.30)

=

∫∫

A\C\D

dxdy dper(x, y)2ρ(x)ρ(y) (E.31)

+

∫∫

C

dxdy dper(x, y)2ρ(x)ρ(y)

+

∫∫

D

dxdy dper(x, y)2ρ(x)ρ(y)

=

∫∫

A\C\D

dxdy
(x− y)2

L2
box

(E.32)

+

∫∫

C

dxdy
(x− y − Lbox)

2

L2
box

+

∫∫

D

dxdy
(x − y + Lbox)

2

L2
box
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1 md=0

2 for ( i = 1 to N )

3 d=random()-random()

4 if ( d > 0.5 )

5 d = d - 1

6 if (d < -0.5 )

7 d = d + 1

8 md = md + (d * d ) / N

9 end for

10 print md

Table E.1: Monte Carlo program to deter-

mine the mean distance md of two particles

in a periodic box with length 1. random()

gives a random number, which is uniformly

distributed in the interval [0, 1). N gives the

number of iteration steps, in this case the

number of measured distances d.

Now we can scale out Lbox by replacing x and y by x′ = x/Lbox and y′ = y/Lbox.

The rescaled integration areas are called A′, C′ and D′.

〈dper(x, y)2〉 = L2
box

∫∫

A′\C′\D′

dx′dy′ (x′ − y′)2 (E.33)

+L2
box

∫∫

C

dx′dy′ (x′ − y′ − 1)2

+L2
box

∫∫

D′

dx′dy′ (x′ − y′ + 1)2

= L2
box

∫∫

A′

dx′dy′ d̃per(x′, y′)2 (E.34)

= L2
box〈d̃per(x′, y′)2〉 (E.35)

This intermediate result is also not surprising; it is just the mean values of two

particles in a periodic box with length 1, where

d̃per(x, y) =





(x− y)+1 : (x− y)< −1/2

(x− y) : −1/2 <(x− y)< 1/2

(x− y)−1 : 1/2 <(x− y)

, (E.36)

is the distance function on a 1D dimensional box length 1. We see that the

mean distance scales with the box length, which seems natural1.

The last integral can be calculated by Monte Carlo integration. A possible

program with N iteration steps can be found in Tab. E.1. The program gives

1/12 as result, which can also be calculated analytically. First we can use the

symmetry of the square of the distance measurement (see Fig. 3.1).

dper(x, y)2 = dper(y, x)2 . (E.37)

1For a box with hard walls this is totally clear, because the distance measurement is the

same function in the whole cube, but for a periodic box it is not that obvious.
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〈d̃per(x, y)2〉 =

∫∫

A′

dxdy d̃per(x, y)2 (E.38)

=

∫ 1

0

dx

∫ 1

0

dy d̃per(x, y)2 (E.39)

= 2

∫ 1

0

dx

∫ x

0

dy d̃per(x, y)2 (E.40)

= 2

∫∫

A′′

dxdy d̃per(x, y)2 (E.41)

where A′′ is the half of the square [0, 1]× [0, 1].

1

2
〈d̃per(x, y)2〉 =

∫∫

A′′\C

dxdy d̃per(x, y)2 +

∫∫

C

dxdy d̃per(x, y)2 (E.42)

=

∫∫

A′′\C

(x− y)2 +

∫∫

C

dxdy (x− y − 1)2 (E.43)

=

∫∫

A′′

dxdy (x− y)2 −
∫∫

C

dxdy (x − y)2 (E.44)

+

∫∫

C

dxdy (x− y − 1)2

=

∫∫

A′′

dxdy (x− y)2 (E.45)

+

∫∫

C

dxdy
[
(x− y + 1)2 − (x− y)2

]

=

∫ 1

0

dx

∫ x

0

dy
(
x2 − 2xy + y2

)
(E.46)

+

∫ 1

1
2

dx

∫ x− 1
2

0

dy (1− 2x + 2y)

=

∫ 1

0

dx
x3

3
−
∫ 1

1
2

dx

(
x2 − x +

1

4

)
(E.47)

=
1

12
− 1

24
. (E.48)

So the final result is:

〈d̃per(x, y)2〉 = 1/6− 1/12 = 1/12 , (E.49)

which is the same as for the Monte Carlo program. The first term (1/6) in

Equ. (E.49) is the square mean distance of two particles in a box with hard

walls. The second term is negative, which shows that a periodic box “looks”

smaller than a normal box. The result for the 3D dimensional box with length

Lbox follows instantly:

〈~dper(~x, ~y)2〉 = 3 · L2
box/12 = L2

box/4 . (E.50)

So the mean distance of two particles is:

〈∆rM 〉 =
√
〈~dper(~x, ~y)2〉 = Lbox/2 . (E.51)
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In the previous chapters we often used the aggregation parameter:

〈Γ〉 = 〈∆rM 〉/2 = Lbox/4 . (E.52)



84 APPENDIX E. CALCULATIONS



Bibliography

[1] T.E. Creighton. Proteins: Structures and Molecular Properties. W.H.

Freeman and Company, New York, 2nd ed. edition, 1993.

[2] http://www.rcsb.org. Homepage of the Protein Database.

[3] http://fred.bioinf.uni-sb.de:4711/DFG-protein-protein-docking/index

.shtml. Protein docking project of the university Saarbrücken.

[4] G. Némethy, K.D. Gibson, K.A. Palmer, C.N Yoon, G. Paterlini, A. Zagari,

S. Rumsey, and H.A. Scheraga. Energy parameters in polypeptides. 10.

Improved geometrical parameters and nonbonded interactions for use in

the ECEPP/3 algorithm, with application to proline-containing peptides.

Journal of Physical Chemistry, 96(15):6472–6484, 1992.

[5] C. Junghans and U.H.E. Hansmann. Numerical comparison of Wang Lan-

dau sampling and parallel tempering for met-enkephalin. International

Journal of Modern Physics C: Physics and Computers, 17(6):817–824,

2006.

[6] C. Junghans and U.H.E. Hansmann. Cross-check methods in protein sim-

ulations. In J. Meinke, S. Mohanty, O. Zimmermann, and U.H.E. Hans-

mann, editors, From Computational Biophysics to Systems Biology 2006,

volume 34 of NIC Series, pages 157–160, Jülich, 2006.
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