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Convective turbulence with phase changes and latent eeleas important dynamical process
in the atmosphere of the Earth which causes, e.g. the favmati clouds. Here we study
moist convection in a simplified setting — shallow and nonjmigating moist Rayleigh-Bénard
convection with a piecewise linear thermodynamics on bimbssof the phase boundary. The
presented model is a first nontrivial extension of the ctadslry Rayleigh-Bénard convection.
The equations of motion and linear stability studies of Eopim are discussed and supercom-
putations of the fully developed turbulent dynamics in vitay Cartesian cells are presented.

1 Introduction

Moist thermal convection combines turbulent convectiothvghase changes and latent
heat release. It is ubiquitous throughout the atmosphetieeoEartl§. When a parcel of
air rises in convective motion, it expands adiabaticallg.a@dconsequence, its temperature
and pressure drop and at some point during its ascent theuaielpbecomes saturated.
The water condensation sets in and clouds are formed. The fange of temporal and
spatial scales in the convective turbulent motion causgwduiiations in the lifetime and
shape of clouds, such as shallow stratocumulus or isolatedilcis clouds, and thus in the
cloud cover and radiation budget. Cloud parametrizatiensain therefore one of the big
uncertainty factors for global circulation and climate rats#l

Despite its enormous importance, the small-scale stre@nd statistics of moist con-
vective turbulence has been studied relatively little canap to its dry convection counter-
part. The reason for this gap is that turbulent convectianaist air includes the complex
nonlinear thermodynamics of phase changes in additioreteutibulent motiof 4. Phase
changes lead to discontinuities of the partial derivatinebe equation of state at the sat-
uration point. The associated latent heat release in the bulk providesidlyahanging
local source of buoyant motion, in addition to the buoyarmryhgat) flux from the bottom
to the top planes as already present in dry convection. fRignt progress in understand-
ing the global and local mechanisms of turbulent heat tearisfdry convection has been
made in the last decade (for a comprehensive review see Ref. 1

In this work, we aim at transfering the numerical analysiaagpts from the well-
investigated dry convection cdse!! ?to the less-explored moist convection case. We
make a first step by considering moist Rayleigh-Bénard ectiwn with a linearized ther-
modynamics of phase chan§esThe model is a straightforward extension of the well-
known dry Rayleigh-Bénard convection case in the Boussjrapproximatiott:12 It is
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also an extension of a moist convection model which was dismioriginally by Brether-

ton™ for the onset of linear instability and weakly nonlinearireg. Here, we conduct

direct numerical simulations of the turbulent nonlineaigst of moist convection and dis-
cuss the computational challenges for studies in flatCells

2 Moist Boussinesq Model

2.1 Thermodynamic Equilibrium Approximation for a Shallow Layer

The buoyancys in atmospheric convection is givenby

_gp(& v, qz_,qz,p) P )

P
with ¢ being the gravity acceleratiom, a mean densityp the pressureS the entropy
and q,, ¢, ¢; the mixing ratios of water vapor, liquid water and ice. S#lethwarm
clouds result iny; = 0. If we assume local thermodynamic equilibrium, which mefans
example that precipitation is absent, the two remainingmgixatios are combined to the
total water mixing ratiogr = ¢, + ¢;- Thus dependencies are reduced®(@, S, gr). The
Boussinesq approximation considers pressure variationsta mean hydrostatic profile
and thus one is left with a functioB(S, ¢r, z). However, this functional dependence is
still highly nonlinear and contains the full thermodynasié phase changes. The next step
is to approximate3 as a piecewise linear function Sfandgr for both phases (vapor and
liquid) close to the phase boundary. This step preserves#tiie new physical ingredient,
the discontinuity of partial derivatives (e.g. the spedifeat) at the phase boundary, but
allows for an explicit determination of whether the air isddly saturated or not. Since
B becomes a linear function ¢f andgr, we can introduce two new prognostic buoyancy
fields, adry buoyancy field> and amoist buoyancy field/, which substituteS andgr.
Consequently, the buoyand(M, D, z) is a linear function of\/ and D and is given at
each space-time-point by

B =

B =max (M,D— NZz) , (2)

whereN; is the Brunt-Vaisala frequency. An air parcel at positkoait timet is unsaturated
if M(x,t) < D(x,t) — N2z;itis saturated if\/ (x,t) > D(x,t) — N2z.

2.2 Equations of Motion and Dimensionless Parameters of thiglodel

The dry and moist buoyancy fields can be decomposed in a Imean and variations
about the mean

D(x,t) = D(z) + D'(x,t) = Do + Mz + D'(x,t) (3)

H
My — My
H

The variations about the mean profiles of both fields havengstieatz: = 0 andH, which

imposes the boundary conditiom = 0 andM’ = 0. Eq. (2) can now be transformed into
B = M(z)+max (M',D' + D(z) — M(z) — N2z). Note that the first term on the right-
hand side is horizontally uniform. This implies that it cam lalanced by a horizontally

M(x,t) = M(z) + M'(x,t) = My + z+ M'(x,t). (4)
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Figure 1. Left: Completely unsaturated intital equilibriwondition withM (z) < D(z)— N2z. Both buoyancy
fields are linearly unstable for sufficiently high Rayleighnmbers. Right: Conditionally unstable equilibrium
case. The dry buoyancy field is linearly stable. The whole Elaaturated and (z) > D(z) — N2z. Do, Mo,
Dy and My are prescribed values of both fieldszat 0 and H.

uniform pressure field given by(z) = —Myz — [(Mg — My)/(2H)]22. We can thus
remove the mean contribution from the buoyancy field withent loss of generality.

A dimensionless version of the equations of motion is olet@diby defining the
characteristic quantities. These are the height of therldyge the free-fall velocity
Uy = /H(My — Mpg), the timeT; = H/Uy, the characteristic (kinematic) presstrg,
and the characteristic buoyancy differeddg — M. The Boussinesq equations are given
by

Ju Pr _,
E—i—(u.V)u——Vp—i—\/RaMV u-+ B(M,D,z)e, (5)
V-u=0 (6)
6D’ 1 RCLD
VD' = ——V?D' + —=u, 7
5 T V) Frias * Ryt (7)
oM’ 1
WIM = ——— 2\ . 8
o TV VPrRany T ®)

We identify three non-dimensional parameters: the Prandtiber,Pr, the dry and the
moist Rayleigh numbersap andRay,, which are defined as
v _ H*(Dy — D) H? (Mo — M)

Pr=—, Rap = ———=, Ray = ——m—=. (9)
K VK VKR

The kinematic viscosity is and the diffusivity of the buoyancy fields is Two more
parameters are hidden implicitly within the definition (2}fee buoyancy3 which is given
in dimensionless form by

B = max <M',D/—|—SSD—|— (1— RaD)z—CSAz) . (10)
RGM

The so-calledSurface Saturation Deficit'SD and theCondensation in Saturated Ascent
CS A are defined as

Dy — M, N2H
—_— CSA = —F"2—— .
My — My’ My — My
These two new non-dimensional parameters respectivelysumedow close the lower

boundary is to be saturated, and how much water can condétise the shallow layer.
WhenD, — M is positive, the air at the lower boundary is unsaturated,2n— M, is

SSD = (11)
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Run | iproc | jproc | Tpsprrr | Tpesprrr | Speedup
1 64 32 10910secs 10829secs| ~ 1%

2 64 64 7301 secs| 7127 secs 2%

3 128 64 6934 secs| 5585 secs 19%

Table 1. Runtime tests on Blue Gene/P for the full moist cotive code in production mode on2948 x
2048 x 513 grid. The number of MPI tasks is ipregproc. Integration was done for 300 time steps.

the amount of water vapor that must be added to an air pardeddome saturated. For
convection over the ocean, the lower boundary can just heaet, i.e.SSD = 0. In the
following we will consider a three-dimensional subspacthneffive-dimensional parameter
space only. We will restrict the present studyfte = 0.7 andSSD = 0.

2.3 Numerical Scheme and Computational Challenges

We solve the model equations in a flat Cartesian slab Wjth= L, = T'H with " > 1
being the aspect ratio. In the lateral direction we applyquic boundary conditions, in
the vertical direction free-slip boundary conditions. ¥lage given by

Ouy  Ouy
0z 0z
atz = 0, H. The equations of motion are solved by a pseudospectrafsziagth volu-
metric fast Fourier transformations (FFT) and 2/3 de-algsTime-stepping is done by a
second-order Runge-Kutta scheme. The smallest resolael iscthe Kolmogorov dissi-
pation length which limits the Rayleigh numbers of our DNSatues of~ 108. We use

B’ in the momentum Eq. (5) instead Bfsince the mean contribution i3(z) and can be
added to the kinematic pressure, idgp + B = 9,p + B’.

Convection in flat and highly resolved Cartesian cells witlid gpoint numbers
N, = N, > N, causes challenges for a parallel implementation of the.cOuethe one
hand, massively parallel computers are necessary to gateh problem at hand. On
the other hand, the geometry requires a two-dimensionallphration, i.e. the volume
V =T'H x I'H x H has to be decomposed into ipsojproc pencils each associated with
a MPI task®. The resulting volumetric FFTs have to be highly scalabke, increasing
the number of CPUs to solve the problem should also subatgndiecrease the time-to-
answer. Recall that three-dimensional FFTs require skgbsbhal communication steps
across the full processor grid. In our code, the FFTs in mabumed7% of the comput-
ing time. We compared here two code versions with three-diomal FFT packages, the
P3DFFT-package by D. PekurovsRyand an improved package PB3DFFT with a cache
blocking such that the data portions fit into the fast L2 caafttbe processors. This avoids
several reloadings into L2 during execution of the FFTs glitre three coordinate direc-
tions and causes a slight speed-up in some cases. In Tabéerépart a test series of runs
for ' = 4. Although the listed results look promising further effodf improvement are
under way, in particular for very flat cells with = 16 or 32. The MPI task mapping on
the 3d Torus in Blue Gene/P becomes then more and more edseénghould be stated
that cache blocking works significantly better on POWER-&teys where 8 times more
memory per core is available than on Blue Gene/P.

u, =D =M =0 and =0 (12)
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Figure 2. Left: Sketch of the configuration in a conditiopalhstable layer that can be solved analytically. Red
lines are the cloud boundaries where matching condition® ba be satisfied. The arrows indicate up- and
downwelling air. Right: Contours of the velocity stream étion which correspond with streamlines of the 2D
velocity field of a linearly unstable mode. The parameteesiag; = 3409, Rap = —955 and Pr = 0.7.
The periodicity length is\ — co. The growth rate i§2 = 0.2485, t = 0.1 andy = 2.8.

3 Linear Stability of a Shallow Moist Convection Layer

Case ofRap > 0 andRajs > 0: Starting point of our dynamical studies is an equilibrium
configuration which is infinitesimally perturbed and evaweto a fully developed turbu-
lent state. The equilibrium configuration for a convectiapdr is a fluid at resty = 0)
and linear profiles of both buoyancy fields(z) and M (z) as defined in Eq. (3) and (4).
In case that both Rayleigh numbers are positive, the linestability sets in at a critical
value, i.e. Rap and Ray; > Ra. = 277*/4 ~ 657.5. Under most circumstances,
the amount of water in the atmosphere decreases with héigig.implies that the moist
Rayleigh number should be larger than the dry Rayleigh nunthe,; > Rap (see Figure

1, left).

Case ofRap < 0 andRays > 0: In the atmosphere, another situation is often present. An
air parcel is unstable if it is saturated, but stable if it isaturated. In case of saturation
condensation sets in which is connected with a local relefkgent heat and an upward
motion of the parcel. We call this reginoenditional instability'®. In this case, the dry
Rayleigh numbeRap < 0, which is sketched in Figure 1 (right). The particular case
of M(z) = D(z) — N2z was discussed in a closely related model by Brethértoiie
was able to progress for the two-dimensional caseyfdependence of all fields) along
the same lines as a classical linear stability analysis pftdnvection. For the onset of
linear instability a periodic slab cloud configuration, &etshed in Figure 2 (left), will
be obtained. Moist cloudy air is rising up inside the slabudi® and clear air is falling
down outside. Sinca/(z) = D(z) — N2z, one needs to discuss one buoyancy field only,
M'. The partial derivatives are discontinuous at the cloudnidany and thus additional
matching conditions inc direction have to be satisfied. This prohibits a normal mode
ansatz inc. With the moist potentiall.(z, z,t) := [ M'(z, z,t)dz, Bretherton ended up
at a 6th-order ordinary differential equation

82 2 RCL]\,[ 4 8
—V2— |4/ PrRay | V= + V©
RaM@tQ ( Pr + TRCL]\[ ot +

with R = Rayy if M'(x, z,t) > 0andR = Rap otherwise. The free-slip boundary condi-
tions are given by, = 0%2L/02% = 0*L/0z* = 0 for z = 0, H. The matching conditions
in z resultin six relation®™ L /0x™ = 0 for z = +/2 wheren = 0, ..., 5. The separation
ansatzL(z, z,t) = exp(Qt)G(z) sin(nz/H) is now used wheré(x + n\) = G(z), as

32

L=R—
02

L, (13)
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Figure 3. Evolution of clouds from the initial equilibriunorfiguration to the fully developed turbulent state.
Times aret/Ty = 11.9 (top left), t/Ty = 41.6 (top right), t/T; = 64.0 (bottom left) andt/T; = 96.7
(bottom right). Isosurfaces of the cloud boundary and adimoensional contour slice af; are shown. Here,
CSA =0.35 Rap = 7.0 x 105, Raas = 1.4 x 10% andI’ = 8.

shown in Figure 2 (left). Solution& in dry and moist areas have to be matched at yet
not known cloud boundary positions= +-/2. Figure 2 (right) shows an example of the
flow field triggered by the linear instability for an isolatelbud with A — oo. The slab

of cloudy air tends to become narrower than the dry air reggnrounding it, as already
shown in a simple model by Bjerknes

4 Numerical Simulations of the Full Turbulent Regime

Case of Rap > 0 and Rajp; > 0: Our numerical computations of the fully devel-
oped turbulent regime were mostly focused so far on the cdssrenboth buoyancy
fields are linearly unstable. An initial equilibrium configtion is perturbed infinites-
imally. After a transient phase df/T; ~ 102, the convective flow is relaxed into a
statistically stationary state. This evolution is illetd by the four snapshots in Fig-
ure 3. An important aspect of the simulations is the evotutdd the cloud patterns.
Clouds are defined in our model as the space-time regionsaviigfuid water mixing ratio
q(x,t) = M(x,t) — (D(x,t) — N2z) > 0. Our parametric studies found that the size of
the cloud patterns depends on both, the paran@@ted and the two Rayleigh numbers
Rap andRays. The covering of the layer by clouds is decreased with irginggRayleigh
numbers. Furthermore, the largés A the more water can be condensed during an adia-
batic ascent. A decrease of this parameter allows to studhnaition from a closed cloud
layer to a broken one. Figure 4 shows an example with a snaidctovet®. Isolated
clouds are found in regions where air is rising up from theugb(red isosurfaces). The

378



Figure 4. Snapshot of a turbulent shallow convection lajiére cell with an aspect ratio of 16 is resolved by
2048 x 2048 x 129 grid points. The simulation was run on one Blue Gene/P ra@R§MPI tasks) and took 10
days. The red isocontours show upwelling motion with > 0.23U. Right above this skeleton of upwelling
fluid, clouds are formed which are displayed as grey tramspasosurfaces.

Figure 5. Cloud base isosurface for moist convection in aitimmally unstable layer. The numbers here,
Rap = —1.0 x 10° and Raj; = 2.5 x 10°. Left: I' = 4. Right: I' = 16. Clouds fill the whole slab
above the isosurface.

perimeter-area analysis of vertically averaged cloudibigion gave a scaling dimension
of 1.27 which is close to 1.32 from large eddy simulationswhalus convection.

Case ofRap < 0 and Rayp; > 0: In the case of conditional instability, we applied a
finite perturbation to a configuration sketched in Figureighf) in order to overcome the
stabilizing effect of the dry buoyancy field. Note that thigial configuration differs from
the slab cloud ansatz (see Figure 2 (right)) in the linednilgyaanalysis of Bretherton. Our
first studies indicate that this regime is very sensitivéoaspect ratid' and the amplitude
of the perturbation (not shown here). This is illustrateigure 5 forl' = 4 andI" = 16.
The cloud basey = 0, is shown for snapshots of the turbulent states. Scatteredsthe
nearly unbroken cloud layer are cloud pieces that reach dovitimne bottom layer. They
reproduce the feature which was illustrated in Figure 2. & aso that their number
grows withI" since the system gains a bigger variability to compensateliipg moist air
by downwelling dry air.
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In summary, we have shown that the present model can displasra features of
moist convection. It is thus an appropriate base for thestigation of the impact of phase
changes and latent heat release on the turbulence and vi&® VvEhe model allows to
include further effects such as rotation of the plane or nfogortantly radiative cooling
at the top.
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