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Convective turbulence with phase changes and latent release is an important dynamical process
in the atmosphere of the Earth which causes, e.g. the formation of clouds. Here we study
moist convection in a simplified setting – shallow and nonprecipitating moist Rayleigh-Bénard
convection with a piecewise linear thermodynamics on both sides of the phase boundary. The
presented model is a first nontrivial extension of the classical dry Rayleigh-Bénard convection.
The equations of motion and linear stability studies of equilibria are discussed and supercom-
putations of the fully developed turbulent dynamics in veryflat Cartesian cells are presented.

1 Introduction

Moist thermal convection combines turbulent convection with phase changes and latent
heat release. It is ubiquitous throughout the atmosphere ofthe Earth8. When a parcel of
air rises in convective motion, it expands adiabatically. As a consequence, its temperature
and pressure drop and at some point during its ascent the air parcel becomes saturated.
The water condensation sets in and clouds are formed. The large range of temporal and
spatial scales in the convective turbulent motion causes big variations in the lifetime and
shape of clouds, such as shallow stratocumulus or isolated cumulus clouds, and thus in the
cloud cover and radiation budget. Cloud parametrizations remain therefore one of the big
uncertainty factors for global circulation and climate models8.

Despite its enormous importance, the small-scale structure and statistics of moist con-
vective turbulence has been studied relatively little compared to its dry convection counter-
part. The reason for this gap is that turbulent convection inmoist air includes the complex
nonlinear thermodynamics of phase changes in addition to the turbulent motion2, 14. Phase
changes lead to discontinuities of the partial derivativesin the equation of state at the sat-
uration point6. The associated latent heat release in the bulk provides a rapidly changing
local source of buoyant motion, in addition to the buoyancy (or heat) flux from the bottom
to the top planes as already present in dry convection. Significant progress in understand-
ing the global and local mechanisms of turbulent heat transfer in dry convection has been
made in the last decade (for a comprehensive review see Ref. 1).

In this work, we aim at transfering the numerical analysis concepts from the well-
investigated dry convection case1, 7, 11, 12to the less-explored moist convection case. We
make a first step by considering moist Rayleigh-Bénard convection with a linearized ther-
modynamics of phase changes9. The model is a straightforward extension of the well-
known dry Rayleigh-Bénard convection case in the Boussinesq approximation11, 12. It is
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also an extension of a moist convection model which was discussed originally by Brether-
ton4, 5 for the onset of linear instability and weakly nonlinear regime. Here, we conduct
direct numerical simulations of the turbulent nonlinear stage of moist convection and dis-
cuss the computational challenges for studies in flat cells10.

2 Moist Boussinesq Model

2.1 Thermodynamic Equilibrium Approximation for a Shallow Layer

The buoyancyB in atmospheric convection is given by6

B = −g ρ(S, qv, ql, qi, p) − ρ

ρ
, (1)

with g being the gravity acceleration,ρ a mean density,p the pressure,S the entropy
and qv, ql, qi the mixing ratios of water vapor, liquid water and ice. So-called warm
clouds result inqi = 0. If we assume local thermodynamic equilibrium, which meansfor
example that precipitation is absent, the two remaining mixing ratios are combined to the
total water mixing ratio,qT = qv+ ql. Thus dependencies are reduced toB(p, S, qT ). The
Boussinesq approximation considers pressure variations about a mean hydrostatic profile
and thus one is left with a functionB(S, qT , z). However, this functional dependence is
still highly nonlinear and contains the full thermodynamics of phase changes. The next step
is to approximateB as a piecewise linear function ofS andqT for both phases (vapor and
liquid) close to the phase boundary. This step preserves themain new physical ingredient,
the discontinuity of partial derivatives (e.g. the specificheat) at the phase boundary, but
allows for an explicit determination of whether the air is locally saturated or not. Since
B becomes a linear function ofS andqT , we can introduce two new prognostic buoyancy
fields, adry buoyancy fieldD and amoist buoyancy fieldM , which substituteS andqT .
Consequently, the buoyancyB(M,D, z) is a linear function ofM andD and is given at
each space-time-point by

B = max
(

M,D −N2
s z
)

, (2)

whereNs is the Brunt-Vaisala frequency. An air parcel at positionx at timet is unsaturated
if M(x, t) < D(x, t) −N2

s z; it is saturated ifM(x, t) > D(x, t) −N2
s z.

2.2 Equations of Motion and Dimensionless Parameters of theModel

The dry and moist buoyancy fields can be decomposed in a linearmean and variations
about the mean

D(x, t) = D(z) +D′(x, t) = D0 +
DH −D0

H
z +D′(x, t) (3)

M(x, t) = M(z) +M ′(x, t) = M0 +
MH −M0

H
z +M ′(x, t) . (4)

The variations about the mean profiles of both fields have to vanish atz = 0 andH , which
imposes the boundary conditionsD′ = 0 andM ′ = 0. Eq. (2) can now be transformed into
B = M(z)+max

(

M ′, D′ +D(z) −M(z) −N2
s z
)

. Note that the first term on the right-
hand side is horizontally uniform. This implies that it can be balanced by a horizontally
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Figure 1. Left: Completely unsaturated intital equilibrium condition withM(z) < D(z)−N2
s z. Both buoyancy

fields are linearly unstable for sufficiently high Rayleigh numbers. Right: Conditionally unstable equilibrium
case. The dry buoyancy field is linearly stable. The whole slab is saturated andM(z) > D(z)−N2

s z. D0, M0,
DH andMH are prescribed values of both fields atz = 0 andH.

uniform pressure field given byp(z) = −M0z − [(MH −M0)/(2H)]z2. We can thus
remove the mean contribution from the buoyancy field withoutany loss of generality.

A dimensionless version of the equations of motion is obtained by defining the
characteristic quantities. These are the height of the layer H , the free-fall velocity
Uf =

√

H(M0 −MH), the timeTf = H/Uf , the characteristic (kinematic) pressureU2
f ,

and the characteristic buoyancy differenceM0−MH . The Boussinesq equations are given
by

∂u

∂t
+ (u · ∇)u = −∇p+

√

Pr

RaM
∇2u +B(M,D, z)ez (5)

∇ · u = 0 (6)
∂D′

∂t
+ (u · ∇)D′ =

1√
PrRaM

∇2D′ +
RaD
RaM

uz (7)

∂M ′

∂t
+ (u · ∇)M ′ =

1√
PrRaM

∇2M ′ + uz (8)

We identify three non-dimensional parameters: the Prandtlnumber,Pr, the dry and the
moist Rayleigh numbers,RaD andRaM , which are defined as

Pr =
ν

κ
, RaD =

H3(D0 −DH)

νκ
, RaM =

H3(M0 −MH)

νκ
. (9)

The kinematic viscosity isν and the diffusivity of the buoyancy fields isκ. Two more
parameters are hidden implicitly within the definition (2) of the buoyancyB which is given
in dimensionless form by

B = max

(

M ′, D′ + SSD +

(

1 − RaD
RaM

)

z − CSAz

)

. (10)

The so-calledSurface Saturation DeficitSSD and theCondensation in Saturated Ascent
CSA are defined as

SSD =
D0 −M0

M0 −MH
, CSA =

N2
sH

M0 −MH
. (11)

These two new non-dimensional parameters respectively measure how close the lower
boundary is to be saturated, and how much water can condense within the shallow layer.
WhenD0 −M0 is positive, the air at the lower boundary is unsaturated, andD0 −M0 is
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Run iproc jproc TP3DFFT TPB3DFFT Speedup
1 64 32 10910 secs 10829 secs ∼ 1%
2 64 64 7301 secs 7127 secs 2%
3 128 64 6934 secs 5585 secs 19%

Table 1. Runtime tests on Blue Gene/P for the full moist convection code in production mode on a2048 ×
2048 × 513 grid. The number of MPI tasks is iproc×jproc. Integration was done for 300 time steps.

the amount of water vapor that must be added to an air parcel tobecome saturated. For
convection over the ocean, the lower boundary can just be saturated, i.e.SSD = 0. In the
following we will consider a three-dimensional subspace ofthe five-dimensional parameter
space only. We will restrict the present study toPr = 0.7 andSSD = 0.

2.3 Numerical Scheme and Computational Challenges

We solve the model equations in a flat Cartesian slab withLx = Ly = ΓH with Γ ≫ 1
being the aspect ratio. In the lateral direction we apply periodic boundary conditions, in
the vertical direction free-slip boundary conditions. They are given by

uz = D′ = M ′ = 0 and
∂ux
∂z

=
∂uy
∂z

= 0 (12)

at z = 0, H . The equations of motion are solved by a pseudospectral scheme with volu-
metric fast Fourier transformations (FFT) and 2/3 de-aliasing. Time-stepping is done by a
second-order Runge-Kutta scheme. The smallest resolved scale is the Kolmogorov dissi-
pation length which limits the Rayleigh numbers of our DNS tovalues of∼ 108. We use
B′ in the momentum Eq. (5) instead ofB since the mean contribution isB(z) and can be
added to the kinematic pressure, i.e.∂zp+B = ∂z p̃+B′.

Convection in flat and highly resolved Cartesian cells with grid point numbers
Nx = Ny ≫ Nz causes challenges for a parallel implementation of the code. On the one
hand, massively parallel computers are necessary to process such problem at hand. On
the other hand, the geometry requires a two-dimensional parallelization, i.e. the volume
V = ΓH × ΓH ×H has to be decomposed into iproc×jproc pencils each associated with
a MPI task10. The resulting volumetric FFTs have to be highly scalable, i.e. increasing
the number of CPUs to solve the problem should also substantially decrease the time-to-
answer. Recall that three-dimensional FFTs require several global communication steps
across the full processor grid. In our code, the FFTs in totalconsume87% of the comput-
ing time. We compared here two code versions with three-dimenional FFT packages, the
P3DFFT-package by D. Pekurovsky15 and an improved package PB3DFFT with a cache
blocking such that the data portions fit into the fast L2 cacheof the processors. This avoids
several reloadings into L2 during execution of the FFTs along the three coordinate direc-
tions and causes a slight speed-up in some cases. In Table 1, we report a test series of runs
for Γ = 4. Although the listed results look promising further efforts of improvement are
under way, in particular for very flat cells withΓ = 16 or 32. The MPI task mapping on
the 3d Torus in Blue Gene/P becomes then more and more essential. It should be stated
that cache blocking works significantly better on POWER-6 systems where 8 times more
memory per core is available than on Blue Gene/P.
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Figure 2. Left: Sketch of the configuration in a conditionally unstable layer that can be solved analytically. Red
lines are the cloud boundaries where matching conditions have to be satisfied. The arrows indicate up- and
downwelling air. Right: Contours of the velocity stream function which correspond with streamlines of the 2D
velocity field of a linearly unstable mode. The parameters are RaM = 3409, RaD = −955 andPr = 0.7.
The periodicity length isλ → ∞. The growth rate isΩ = 0.2485, t = 0.1 andγ = 2.8.

3 Linear Stability of a Shallow Moist Convection Layer

Case ofRaD > 0 andRaM > 0: Starting point of our dynamical studies is an equilibrium
configuration which is infinitesimally perturbed and evolves into a fully developed turbu-
lent state. The equilibrium configuration for a convection layer is a fluid at rest (u = 0)
and linear profiles of both buoyancy fields,D(z) andM(z) as defined in Eq. (3) and (4).
In case that both Rayleigh numbers are positive, the linear instability sets in at a critical
value6, i.e. RaD andRaM > Rac = 27π4/4 ≈ 657.5. Under most circumstances,
the amount of water in the atmosphere decreases with height.This implies that the moist
Rayleigh number should be larger than the dry Rayleigh number,RaM ≥ RaD (see Figure
1, left).
Case ofRaD < 0 andRaM > 0: In the atmosphere, another situation is often present. An
air parcel is unstable if it is saturated, but stable if it is unsaturated. In case of saturation
condensation sets in which is connected with a local releaseof latent heat and an upward
motion of the parcel. We call this regimeconditional instability3, 6. In this case, the dry
Rayleigh numberRaD < 0, which is sketched in Figure 1 (right). The particular case
of M(z) = D(z) − N2

s z was discussed in a closely related model by Bretherton4, 5. He
was able to progress for the two-dimensional case (noy-dependence of all fields) along
the same lines as a classical linear stability analysis of dry convection. For the onset of
linear instability a periodic slab cloud configuration, as sketched in Figure 2 (left), will
be obtained. Moist cloudy air is rising up inside the slab clouds and clear air is falling
down outside. SinceM(z) = D(z) −N2

s z, one needs to discuss one buoyancy field only,
M ′. The partial derivatives are discontinuous at the cloud boundary and thus additional
matching conditions inx direction have to be satisfied. This prohibits a normal mode
ansatz inx. With the moist potential,L(x, z, t) :=

∫

M ′(x, z, t)dx, Bretherton ended up
at a 6th-order ordinary differential equation

[

RaM
∂2

∂t2
∇2 −

(

√

RaM
Pr

+
√

PrRaM

)

∇4 ∂

∂t
+ ∇6

]

L = R
∂2

∂x2
L , (13)

withR = RaM if M ′(x, z, t) > 0 andR = RaD otherwise. The free-slip boundary condi-
tions are given byL = ∂2L/∂z2 = ∂4L/∂z4 = 0 for z = 0, H . The matching conditions
in x result in six relations∂nL/∂xn = 0 for x = ±γ/2 wheren = 0, ..., 5. The separation
ansatzL(x, z, t) = exp(Ωt)G(x) sin(πz/H) is now used whereG(x+ nλ) = G(x), as
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Figure 3. Evolution of clouds from the initial equilibrium configuration to the fully developed turbulent state.
Times aret/Tf = 11.9 (top left), t/Tf = 41.6 (top right), t/Tf = 64.0 (bottom left) andt/Tf = 96.7
(bottom right). Isosurfaces of the cloud boundary and a two-dimensional contour slice ofql are shown. Here,
CSA = 0.35, RaD = 7.0 × 105, RaM = 1.4 × 106 andΓ = 8.

shown in Figure 2 (left). SolutionsG in dry and moist areas have to be matched at yet
not known cloud boundary positionsx = ±γ/2. Figure 2 (right) shows an example of the
flow field triggered by the linear instability for an isolatedcloud withλ → ∞. The slab
of cloudy air tends to become narrower than the dry air regions surrounding it, as already
shown in a simple model by Bjerknes3.

4 Numerical Simulations of the Full Turbulent Regime

Case ofRaD > 0 and RaM > 0: Our numerical computations of the fully devel-
oped turbulent regime were mostly focused so far on the case where both buoyancy
fields are linearly unstable. An initial equilibrium configuration is perturbed infinites-
imally. After a transient phase oft/Tf ∼ 102, the convective flow is relaxed into a
statistically stationary state. This evolution is illustrated by the four snapshots in Fig-
ure 3. An important aspect of the simulations is the evolution of the cloud patterns.
Clouds are defined in our model as the space-time regions witha liquid water mixing ratio
ql(x, t) = M(x, t) − (D(x, t) −N2

s z) ≥ 0. Our parametric studies found that the size of
the cloud patterns depends on both, the parameterCSA and the two Rayleigh numbers
RaD andRaM . The covering of the layer by clouds is decreased with increasing Rayleigh
numbers. Furthermore, the largerCSA the more water can be condensed during an adia-
batic ascent. A decrease of this parameter allows to study a transition from a closed cloud
layer to a broken one. Figure 4 shows an example with a small cloud cover13. Isolated
clouds are found in regions where air is rising up from the ground (red isosurfaces). The
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Figure 4. Snapshot of a turbulent shallow convection layer.The cell with an aspect ratio of 16 is resolved by
2048× 2048× 129 grid points. The simulation was run on one Blue Gene/P rack (4096 MPI tasks) and took 10
days. The red isocontours show upwelling motion withuz ≥ 0.23Uf . Right above this skeleton of upwelling
fluid, clouds are formed which are displayed as grey transparent isosurfaces.

Figure 5. Cloud base isosurface for moist convection in a conditionally unstable layer. The numbers here,
RaD = −1.0 × 105 andRaM = 2.5 × 105. Left: Γ = 4. Right: Γ = 16. Clouds fill the whole slab
above the isosurface.

perimeter-area analysis of vertically averaged cloud distribution gave a scaling dimension
of 1.27 which is close to 1.32 from large eddy simulations of cumulus convection.
Case ofRaD < 0 andRaM > 0: In the case of conditional instability, we applied a
finite perturbation to a configuration sketched in Figure 1 (right) in order to overcome the
stabilizing effect of the dry buoyancy field. Note that this initial configuration differs from
the slab cloud ansatz (see Figure 2 (right)) in the linear stability analysis of Bretherton. Our
first studies indicate that this regime is very sensitive to the aspect ratioΓ and the amplitude
of the perturbation (not shown here). This is illustrated inFigure 5 forΓ = 4 andΓ = 16.
The cloud base,ql = 0, is shown for snapshots of the turbulent states. Scattered across the
nearly unbroken cloud layer are cloud pieces that reach downto the bottom layer. They
reproduce the feature which was illustrated in Figure 2. We see also that their number
grows withΓ since the system gains a bigger variability to compensate upwelling moist air
by downwelling dry air.
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In summary, we have shown that the present model can display several features of
moist convection. It is thus an appropriate base for the investigation of the impact of phase
changes and latent heat release on the turbulence and vice versa. The model allows to
include further effects such as rotation of the plane or moreimportantly radiative cooling
at the top.
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G. Joubert, T. Lippert, B. Mohr und F. Peters, NIC Series 38, Jülich 2007, 585-592
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