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ABSTRACT: We present an approach to systematically coarse-grain liquid mixtures using the fluctuation solution theory of
Kirkwood and Buff in conjunction with the iterative Boltzmann inversion method. The approach preserves both the liquid
structure at pair level and the dependence of solvation free energies on solvent composition within a unified coarse-graining
framework. To test the robustness of our approach, we simulated urea−water and benzene−water systems at different
concentrations. For urea−water, three different coarse-grained potentials were developed at different urea concentrations, in
order to extend the simulations of urea−water mixtures up to 8 molar urea concentration. In spite of their inherent state point
dependence, we find that the single-site models for urea and water are transferable in concentration windows of approximately 2
M. We discuss the development and application of these solvent models in coarse-grained biomolecular simulations.

1. INTRODUCTION
Biomolecules in water can be salted-in, salted-out, or chemically
denatured by the presence of cosolvents, such as alcohols,
inorganic salts, guanidinium chloride, and urea, to name a
few.1,2 Herein, we are interested in developing systematically
coarse-grained (CG) single-site models for water and chemical
denaturants such as urea, which may find application in coarse-
grained biomolecular simulations.3 Urea is a well-known
salting-in agent: preferential interaction of urea (over water)
with nonpolar molecules4,5 as well as with nonpolar and polar
groups on peptides,6,7 including the peptide backbone of
proteins,8 favors the solvation of these groups and leads to a
decrease of their solvation free energies. A systematic molecular
coarse graining method, which provides solvent models that
reproduce the solvation free energies while keeping the
required structural information, is presently not available and
will be proposed in this work.
Effective nonbonded pair potentials for CG models have

successfully been developed for polymers9−12 and nonpolar
molecular liquids13−16 by reversible work techniques in which
averages are taken over degrees of freedom no longer
represented by the CG model, such as angular orientations.
Owing to multibody correlations, this type of approach will
however fail for hydrogen bonded liquids, and alternative
approaches are needed. Herein, we propose an approach that is
based on the thermodynamic theory of Kirkwood and Buff
introduced in the early 1950s.17 Instead of relating the
thermodynamic properties to the intermolecular potentials,
this theory relates the thermodynamic properties to integrals of
radial distribution functions (RDF) over the volume. For
solution components i and j, these so-called Kirkwood−Buff
integrals (KBI) are defined as17
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where gij(r) is the RDF and Gij is the KBI. Away from the
critical point where density fluctuations become long-ranged,
contributions to this integral are local and are determined by
fluctuations on length scales R < 1 nm. Physically, ρjGij can be
interpreted as the change in the number of j molecules in a
spherical region of radius R in the solution before and after
placing a molecule i at the origin of that region (ρj is the
number density of component j).18 We thus see that Gij is a
local quantity which can be used as a measure of the affinity
between solution components i and j. In the binary system of
cosolvent (c) and water (w), the link to the solvation
thermodynamics is given by18,19
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where kBT ln γc is the cosolvent solvation free energy (at
pressure p, temperature T, and cosolvent number density ρc)
and γc is the cosolvent molar scale activity coefficient. Similar
expressions have been derived for systems that have a solute (s)
at infinite dilution (ρs →0) in a cosolvent−water solution. In
this case, the solvation free energy of the solute (ΔGs) varies
with the solution composition according to18
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where R is the gas constant, η = ρw + ρc + ρwρc(Gww + Gcc −
2Gcw), and ρ is the number density of individual components of
the aqueous solutions. Preferential solvation of the solute by
cosolvent molecules (Gsw − Gsc < 0) results in a decrease of
ΔGs upon increasing the cosolvent mole fraction xc (salting-in).
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In this paper, we pursue the idea that a CG model provides a
good representation of the realistic system if it reproduces the
solvent composition dependence of the solvation free energies
as expressed by eq 2 and eq 3 in a range of nearby
concentrations. A conformational transition of a biomolecule
driven by changes of the solvation shell composition provides
just one illustrative example where this is important. The
coarse-grained view provided by Kirkwood−Buff theory tells us
that this requirement can be met with models that reproduce
the Gij’s. Although the RDFs need not necessarily be
reproduced to realistically model salting-in and salting-out
processes, CG models that represent both the RDFs and KBIs
of the real system significantly extend the scope and
applicability of CG biomolecular simulations.
A CG water−cosolvent model that represents the pairwise

liquid structure without sacrificing the required thermodynamic
accuracy has previously been reported for benzene in water.20

The approach reported there however relies on pairwise
additivity of hydrophobic interactions between small molecules
at low concentration and cannot readily be generalized to
hydrophilic compounds. Alternatively, the MARTINI
model21,22 is instead parametrized to reproduce experimental
transfer free energies. Although the MARTINI model is very
useful in studies of, among others, self-assembly processes, it is
not sufficiently accurate to reproduce the dependence of
solvation free energies on solvent composition and the
corresponding changes in liquid structure. As illustrated by
Figure S1 in the Supporting Information, the MARTINI model
predicts a typical Lennard-Jones-type fluid structure for an
aqueous solution with a polar cosolvent. This structure is
however not representative of aqueous systems in which the
RDFs show significantly less pronounced long-range oscil-
lations.

2. SIMULATION DETAILS
Atomistic simulations were performed with the GROMACS
molecular dynamics package.23 The force field parameters for
urea were taken from the Kirkwood−Buff-derived force field;19

for benzene, the Gromos 43A1 parameters were used.24 Water
was modeled with the SPC/E potential.25 The all-atom
simulations were performed in the NpT ensemble. The
pressure was controlled with a Parrinello−Rahman barostat26

at 1 atm pressure with a coupling time of 3 ps. The temperature
was set to 300 K in all simulations using a Nose−Hoover
thermostat27,28 with a relaxation time of 0.5 ps. The integration
time step was set to 2 fs, and 100 ns trajectories were
accumulated. Electrostatic interactions were calculated with the
particle mesh Ewald (PME) method.29 The nonbonded
interaction cutoff was chosen as 1 nm. The simulations of
aqueous urea were performed with approximately 11 000 water
molecules; for aqueous benzene, the number of water
molecules varied between 10 000 to 56 000. The number of
cosolvent molecules was varied according to the concentration.
The urea concentrations were taken between 2.6 and 7.7 M and
for benzene between 0.1 and 0.5 M.
The coarse-grained simulations were performed in an NVT

ensemble with the GROMACS simulation package at the
average NpT volume of the corresponding atomistic simulation.
The equations of motion were integrated using the leapfrog
stochastic algorithm. The inverse friction constant was set to
0.2 ps for urea/water and 1.0 ps for the benzene/water systems.
The integration time step was set to 4 fs, and the cutoff was set
to 1.4 nm.

3. RESULTS AND DISCUSSIONS
3.1. Method and Implementation. CG solvent models

that represent the RDFs in principle also represent the
thermodynamic solvation properties in eqs 2 and 3. CG
methods that optimize effective pair potentials in order to
reproduce the RDFs have previously been reported in the
literature and include the inverse Monte Carlo30,31 and iterative
Boltzmann inversion (IBI)32 methods. These methods provide,
at least in principle, the required balance of structural and
thermodynamic properties but, as we will show here, need to be
further refined, since in practice small variations in the RDFs
lead to large variations in the corresponding KBIs, owing to the
volume integration in eq 1.
We have simulated all-atom and coarse-grained systems of

urea in water and benzene in water. In this work, we use the IBI
method implemented in the VOTCA package.33 The procedure
starts from an initial guess for the coarse-grained pair potential,
Uij

(0)(r), which is obtained from a reference distribution, in this
case the RDF, gij

(ref)(r), between the molecular centers of mass
sampled in an all-atom simulation:

= −U r k T g r( ) ln ( )ij ij
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The coarse-grained pair potential is iteratively refined until
consistency is achieved between the coarse-grained and the
reference distributions:
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In every iteration, a 10-ns- (for benzene) and a 1-ns- (for urea)
long MD simulation is performed. The final, converged CG
potential is then used to run a MD simulation that generates a
25-ns-long trajectory. Here, we first start by discussing the
results for aqueous urea. Figure 1 shows gij(r) and Gij(r) for
urea−urea, urea−water, and water−water pairs obtained with
the all-atom and IBI coarse-grained models. The KBIs (eq 1)
are obtained from the Gij(r) functions by taking the limit for
large r. Typically, a limiting plateau value is observed in these
functions for distances greater than 1 nm, provided that the box
dimension is chosen to be large enough.34 In this work, the
KBIs are obtained by averaging Gij(r) in the interval between 1
and 1.4 nm. While the RDFs are reproduced within the line
thickness, the limiting Gij values are shifted in comparison to
the target all-atom Gij’s (see black and red curves in Figure 1).
In particular, in mixtures, any small error in the fitted gij(r) at
short-range can propagate to the tail of Gij(r), giving rise to the
discrepancy observed in Figure 1.
In order to reproduce the exact KBIs, we add a correction

term into the coarse-grained potential:
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where Gij
(ref) is the KBI calculated from the reference all-atom

simulation and Gij
(n) is the KBI after the nth iteration. The idea

behind using the specific ramp can be rationalized as follows: If
the KBIs of the CG model are larger than the all-atom KBIs (as
in the urea−urea and water−water KBIs in Figure 1), this infers
an unphysical local excess coordination of molecules. There-
fore, some repulsion needs to be added to the potential in order
to weaken the aggregation. Similarly, if the local aggregation is
underestimated (as in urea−water KBI in Figure 1), then some
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attraction is needed in the potential. In principle, we can choose
any appropriate functional form. However, we chose to use the
simplest function that has been shown to work perfectly well in
the case of linear pressure correction.32 The prefactor A is
system-specific and can be tuned on the basis of convergence.
With our system and specific simulation protocol, a good
estimate of A is in the range between 0.01 and 0.10 kJ nm−3

mol−1. The prefactors are summarized in the Supporting
Information. The KBIs are significantly improved by using the
correction in eq 6 as a ramp (see the blue curve in the Figure
1). The models obtained in this way are referred to as KB-IBI.
The modifications to the VOTCA package33 used for the KB-
IBI method will be a part of VOTCA release 1.3, and we will
also include an example from this work. In Figure 2, we show a
comparative plot of the pairwise coarse-grained potentials
obtained from the two separate approaches.

3.2. Applications. Having validated the approach for one
concentration of urea, we now want to test if the same
approach can also be used for a wider range of cosolvent
concentrations. Figure 3 shows Gij as a function of urea molar

concentration cu. The unmodified IBI model shows significant
deviations from the all-atom data. The KB-IBI model does a
much better job and reproduces the KBIs and, therefore, the
solution thermodynamic properties of the parent atomistic
model. We point out that procedures which identically match
the liquid structure of the CG and all-atom models necessarily
provide identical KBIs, but not vice versa. Therefore, it is
imperative to investigate to what extent the KB-IBI procedure
preserves the liquid structure. In Figure 4, we show the urea−
urea RDF for three concentrations corresponding to the middle
panel of Figure 3. These results confirm that the RDF is
reproduced very well. The urea−urea RDF converges slowest
owing to the smaller number of urea molecules compared to
water molecules present in the system. The urea−water and
water−water RDFs (not shown) show equally good agreement.

Figure 1. Radial distribution functions gij(r) and running integrals
Gij(r) = 4π ∫ 0

r [gij(s) −1]s2 ds for aqueous urea mixture at 4.7 M urea.
Comparative data are shown for all-atom and the IBI and Kirkwood−
Buff IBI (KB-IBI) coarse-graining methods. We present data for all
three pairs, urea−urea (uu), urea−water (uw), and water−water (ww).

Figure 2. Coarse-grained potentials for a urea−water mixture obtained
at 4.7 M urea solution. Solid lines denote IBI potentials; the dashed
lines denote KB-IBI potentials. The inset shows an enlarged view of
the potential minima.

Figure 3. Kirkwood−Buff integrals Gij for aqueous urea solutions as a
function of the molar urea concentration cu. Results are shown for all
three pairs; urea−urea (uu), urea−water (uw), and water−water (ww).
The CG pair potentials (IBI and KB-IBI) were developed for the
solution systems (at urea concentration cu) indicated by the arrows
and were subsequently used in the concentration windows bounded by
the vertical dashed lines. Solid lines are fits to the all-atom data.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct3000958 | J. Chem. Theory Comput. 2012, 8, 1802−18071804



The urea and water CG potentials are state-point-dependent.
Their transferability to systems with varying urea concentration
is therefore not guaranteed. The CG urea−water systems were
however simulated with the same CG potential in a finite
window of urea concentrations delineated by the vertical
dashed lines in Figure 3. We thus developed the CG potential
at only three urea concentrations, namely, 2.6, 4.7, and 6.8 M,
indicated by the arrows in the Figure 3. The potentials are
shown in the Supporting Information. The data in Figure 3
show that the KB-IBI models are transferable in concentration
ranges of approximately 2 M. This is partially due to the
invariance of the pair structure over such a small concentration
range.
Next, we show the results for aqueous benzene solutions.

The pairwise CG potential for the benzene−water solution is
shown in the Figure 5. Figure 6 presents the Gij’s as a function

of benzene molar concentration. In this case, the results are
significantly better for the KB-IBI model compared to the
normal IBI model, which shows too strong benzene−benzene
aggregation at all concentrations. The CG potential, developed
at cb = 0.2 M, shows good transferability up to a concentration
slightly above 0.5 M, where the system becomes unstable
(phase separates) in the all-atom simulation. In CG simulations
with the IBI, KB-IBI, and earlier developed models,20 the
benzene−water system however remains stable above 0.5 M.
This observation indicates that KB-IBI CG models indeed

realistically describe thermodynamically stable solutions but fail
to describe systems outside equilibrium and processes including
lipid self-assembly for which the MARTINI model21 provides a
better choice. Figure 7 presents benzene−benzene RDFs. The

data clearly support that the structure is reasonably well
reproduced. A closer inspection of the plot reveals that the first
peak at 0.6 nm is better reproduced for the lower molar
concentrations. However, at larger concentrations, the agree-
ment is relatively poor. Furthermore, longer ranged correlations
(beyond 0.75 nm) are always better obtained by the KB-IBI
model. We show only the benzene−benzene RDF, which is
mostly affected because of poor statistics. The benzene−water
and water−water RDFs are in closer agreement with the
reference atomistic model (not shown). Interestingly, KBI-IBI
provides a better converged benzene−benzene RDF with
significantly fewer iterations (in total 50 iterations were
performed) compared to the standard IBI method (100
iterations).

Figure 4. Radial distribution function between urea molecules for
three different urea molar concentrations. The coarse-grained pair
potential, developed for the 4.7 M urea solution, was used for all three
concentrations.

Figure 5. Coarse-grained potentials for benzene−water mixture
obtained at 0.2 M benzene solution. Solid lines denote IBI potentials;
the dashed lines denote the KB-IBI potentials.

Figure 6. Kirkwood−Buff integrals Gij for aqueous benzene solutions
as a function of molar benzene concentration cb. Results are shown for
all three pairs; benzene−benzene (bb), benzene−water (bw), and
water−water (ww). The CG pair potentials (IBI and KB-IBI) were
optimized for the system with cb = 0.2 M and have been used in the
CG MD simulations at all concentrations. The CG(PMF) data
obtained by Villa et al.20 are included for comparison. Solid lines are
fits to the all-atom data.

Figure 7. Radial distribution function for three different benzene
molar concentrations. The coarse-grained potential was optimized for
the 0.2 M benzene solution and was used at all three concentrations.
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Finally, we consider the solvation free energies of the
aqueous mixture components. The dependence of the urea and
benzene solvation free energies on their molar concentration in
solution is described by the quantity fcc  ((∂ ln γc)/(∂ ln
ρc))p,T and is presented in Figure 8 as a function of the

cosolvent (urea or benzene) concentration cc. The KB-IBI
model shows significantly better agreement with the all-atom
data and with experiments in comparison to the IBI model.
Practical application of the models discussed in this paper

requires further development of pair potentials that describe
urea and water interactions with chemical groups of dissolved
solutes (peptides, proteins, etc.). The KB-IBI method can
readily be extended to systems with additional solutes and
therefore may provide a useful route to construct nonbonded
potentials that can be used in CG simulations of salting-in and
salting-out phenomena, protein denaturation, or stabilization by
chemical denaturants and/or osmolytes. In these applications,
the phenomena of interest are driven by fluctuations in solvent
composition, and CG models must therefore reproduce the
changes in solvation free energies with quantitative accuracy;
i.e., the CG models must reproduce the Gij’s in a suitable range
of concentrations.
3.3. Conclusions. We have proposed a systematic

molecular coarse-graining approach, which, inspired by Kirk-
wood−Buff (KB) solution theory, provides a new route to
developing CG models that reproduce the liquid structure at
the pair level and the solvation free energies of the mixture
components. The approach is based on the iterative Boltzmann
inversion (IBI) method and is denoted KB-IBI. We developed
three different coarse-grained KB-IBI potentials for urea/water
systems at different urea concentrations, allowing the
simulation of urea−water mixtures up to 8 molar urea
concentration. In spite of their inherent state point depend-
ence, we find that the single-site models for urea and water are
transferable in concentration windows of approximately 2 M.
We furthermore find that the KB-IBI method provides
converged potentials for the liquid mixtures studied here with
significantly fewer iterations compared to standard IBI. The
KB-IBI method can be easily generalized to multicomponent
systems, offering opportunities to parametrize CG nonbonded
potentials for interactions between solvent components and

chemical groups on biomolecules. A next step in this direction
would be to consider single solutes in urea−water mixtures and
optimize only the KB-IBI solute−solvent potentials without
further optimizing the KB-IBI solvent−solvent potentials,
which are then taken from the binary urea−water mixtures
studied in this work. Since the salting-in (or salting-out)
behavior in dilute solute/urea/water systems is determined by
the solute−solvent Kirkwood−Buff integrals only (see eq 3),
while the solvent−solvent KBIs can be assumed to remain
unaffected in the limit of very low solute concentration, KB-IBI
solute−solvent potentials can be developed for a variety of
solutes in combination with a fixed set of potentials for the
solvent−solvent interactions.
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