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a b s t r a c t

We present an adaptive sampling method supplemented by a distributed database and a prediction
method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme
integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum
and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD)
simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces
a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud
database Redis provides the plain table lookup, and with locality aware hashing we gather input data
for our prediction scheme. For the latter we use kriging, which estimates an unknown value and its
uncertainty (error) at a specific location in parameter space by usingweighted averages of the neighboring
points. We find that our adaptive scheme significantly improves simulation performance by a factor of
2.5–25, while retaining high accuracy for various choices of the algorithm parameters.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A fundamental challenge in computational materials science is
to span the enormous gap between atomic and engineering scales.
Hence, one of the major computational challenges is found in han-
dling the sample size, since amassive number of atoms (O(1023)) is
necessary to represent even a micro-scale piece of material. Many
physical phenomena are more successfully described on the con-
tinuum level, in which a large collection of statistically homoge-
neous atoms can be described with a few physical values. Such
a description can be effective to investigate the basic properties
of ideal materials. However, in most materials systems, properties
are crucially affected by atomic and micro-scale inhomogeneities.
To incorporate atomistic details, simulations tend to be more ap-
propriate than a theoretical approach. Unfortunately, it is com-
pletely impractical to simulate any sizable piece of material in full
atomistic detail for a time-scale of seconds using molecular dy-
namics (MD) simulation, even on modern supercomputers. The
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development of coarse-graining techniques is therefore a highly
active field [1–5], which are applicable for adaptive mesh refine-
ment [6–8] and machine learning [9,10]. These techniques lever-
age scale separation to effectively integrate out fine-scale degrees
of freedom, and to produce a statistical description of the dynam-
ics at themacro-scale. Inmultiscale simulations the coarse-grained
macro-scale dynamics is enhanced with constitutive data supplied
at themicro-scale. In this workwe focus on acceleratingmultiscale
simulations with adaptive sampling, which seeks to improve effi-
ciency by eliminating unnecessarymicro-scale simulationwithout
neglecting essential properties of the material.

A promising approach to multi-scale modeling is the Heteroge-
neous Multiscale Method (HMM) [11–13]. Here, ‘‘heterogeneous’’
emphasizes that the models at different scales may be of very
different nature, e.g., molecular dynamics at the micro scale and
continuum mechanics at the macro scale. A similar and concur-
rently developed framework is the ‘‘equation free’’ approach [14].
HMM assumes a well defined set of equations at themacroscale. In
our case, these are the multidimensional hyperbolic conservation
laws, which we evolve using a finite volume scheme, specifically
a non-oscillatory central scheme [15–17]. Separation of time and
length scales is assumed. This allows for independent micro-scale
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Fig. 1. Schematics of the physical problem considered here. Impact (laser beam)
on a copper plate. The finite volume cubes represent thematerial on the continuum
level, while the microscopic response of each volume element is provided by MD
simulations of the underlying copper crystal.

simulations, which are connected at the macro scale as input for
the continuum description.

We applied HMM to a set of differential equations for elas-
todynamics in order to model deformation-propagation in solid
materials, specifically a defect-free copper crystal, including tem-
perature and stochastic effects, as illustrated in Fig. 1. Simulating a
macro-scale sample with this level of detail using pure MD simu-
lations would be impossible even on state-of-the-art high perfor-
mance computers. Despite the enormous efficiency gains enabled
by HMM, spawning a micro-scale simulation at every macro-scale
volume element at every time-step remains prohibitively expen-
sive in many cases.

We demonstrate that adaptive sampling methods can further
boost HMM performance by reducing the number of micro-scale
simulations executed in each time step. This work is complemen-
tary to previous adaptive sampling methods [18–20], that reduce
the number of micro-scale simulations by means of prediction or
interpolation on the macro scale.

In this contribution we will introduce our implementation of
an adaptive sampling scheme, which we call Distributed Database
Kriging for Adaptive Sampling (D2KAS). The method is based on
the adaptive sampling method introduced by Knap [18] and Bar-
ton et al. [19]. These authors used a prediction scheme based upon
a metric-tree database, while assuming a deterministic system.
In our approach, we applied the prediction scheme to the HMM
model for stochastic data supported by a cloud database. The adap-
tive samplingmethod is based on the ‘‘best linear unbiased predic-
tion’’, also known as kriging. Kriging in context ofmachine learning
has been applied to a vast amount of different problems, rang-
ing from its origins in geostatistics for environmental data mining
and modeling [21] to multipolar electrostatics [22] computations
or constructions of accurate polarizable water potentials [23]. In
our approach we utilize the high-performance cloud database Re-
dis [24] to store the results of theMD simulations, which we either
use directly as a lookup table or as input for kriging. D2KAS also
uses a basic mapping to avoid duplicated MD as well as kriging in-
terpolations to reduce the total number of parallel tasks.

In this paper, we will show by means of two test problems
that our adaptive scheme is sufficiently robust and efficient and
Fig. 2. Schematic of the implementation of the Distributed Database Kriging for
Adaptive Sampling (D2KAS). Execution starts after some initial routines with a
check of the database (top of diagram). The execution scheme shows one loop for
computing a half step in time. A detailed description of the single loops is given in
Section 4.

provides a general framework for different prediction methods
and cloud databases. Our approach is suitable for emerging pro-
gramming models, highly parallel and heterogeneous computing
architectures, and implementation with task-based programming
languages, libraries, and runtime systems such as Charm++ [25]
or Intel’s CnC [26].

The paper is structured as follows: Section 2 starts with a short
survey and some general remarks about the D2KAS workflow. In
Section 3, we take a look at the general HMM framework and
its application to elastodynamics. An introduction about kriging
follows in Section3.3, and in Section4 the key-value databaseRedis
usage aswell as the implementation and its features,which include
gradient analysis and task mapping are explained. Section 5
presents two test problems, which are used to demonstrate our
method and assess the performance of the adaptive sampling
and its dependence on different numerical tolerance. Finally, in
Section 6 we close with an outlook on possibilities and challenges
the D2KAS framework provides.

2. D2KAS in a nutshell

The basic workflow diagram in Fig. 2 shows the main loop
of our adaptive sampling method. Assuming a simulation of an
area divided into small domains (see Fig. 1), we need to compute
fluxes (e.g. the stress tensor) through the surfaces of the volume
based on conserved quantities (e.g. the strain tensor) inside the
volume (Section 3). To gather the necessary data for each volume
we have three possibilities: First, use a result stored in our
database, accessed by a key based on the conserved quantities
(Section 4); Second, estimate the fluxes with the help of kriging
based on a subset of results stored in the database (Section 3.3);
Third, compute new fluxes by executing a micro-scale simulation
(Section 3.1). The results of the MD runs are stored in the database
using a different set of keys as the kriging results. This avoids the
use of estimated values as input for the kriging.

Fig. 2 shows the path of decisions made during the update loop
over the field. We start with checking the database for results
whichmatch our input data. If thiswas not successful,we apply our
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gradient analysis of the stress field to decide whether we will try
to estimate the result using kriging or if we have to execute an MD
simulation. If the gradient is smaller than a certain threshold we
add the input data to a task list collecting all kriging tasks. A similar
list collects all the MD simulations that have to be executed. After
mapping the tasks to remove duplicated ones, we start all tasks in
parallel. If a kriging task has not been successful, which depends
on the computed error, an MD simulation is immediately started.
After all tasks have been accomplished the results are distributed
back to the field. Further information about the implementation
and a detailed schematic are given in Section 4.We utilized a cloud
database, which can be accessed by the parallel tasks to gather
information as well as write results to it. This general scheme
is based on a macro-scale framework solving partial differential
equations, which is supported by a highly parallel database and a
dynamic runtime that spawns independentmicro tasks for parallel
execution. Reducing costly micro tasks by a prediction method
using the results stored in the database leads to a further boost in
the performance of our model. In our specific case we use a finite
volume solverwith a non-oscillatory central scheme for hyperbolic
differential equations on the macroscale, solving a set of PDE for
elastodynamics as described in the next section. The simulations
on the micro-scale are classical molecular dynamics simulations,
executed by the proxy application CoMD [27]. As prediction
method we use kriging, a best linear unbiased predictor. The
novelty of our approach is utilizing a distributed cloud database
for both table lookup and input for the kriging in combinationwith
adaptive sampling.

3. Method

3.1. HMM for elastodynamics

In the present work, we take a look at two test scenarios with
different complexity. Both are describing an elastic wave propa-
gation in a perfect crystal with finite temperature. Based on the
continuum description with macroscopic conservation laws HMM
incorporates momentum and energy fluxes calculated microscop-
ically using time-averaged MD computations. One assumes that
the microscopic MD simulations are ergodic and that the micro-
scopic quantities are unique functions of the macroscopic inputs,
although finite sampling times introduce stochastic noise into the
results, as opposed to the deterministic fine-scale models used in
previous adaptive sampling works [19,18]. Therefore, it is valid to
extend themicroscopically averagedquantities e.g. stress,momen-
tum and energy density, to the macroscopic scale [12].

Starting with the micro-scale molecular dynamics, e.g. New-
ton’s equations, the following set of conservation laws

∂tρ + ∇ · q = 0 (1)
∂tq + ∇ · τ = 0 (2)
∂te + ∇j = 0, (3)

may be derived [28]. The mass, momentum, and energy densities
are given as distributions,

ρ(r, t) =


i

miδ(r − ri(t)) (4)

q(r, t) =


i

mivi(t)δ(r − ri(t)) (5)

e(r, t) =


i


1
2
miv2i +

1
2


j≠i

φ(rij(t))


δ(r − ri(t)), (6)

wheremi, ri, and vi are the mass, position, and velocity of particle i
and φ(rij(t)) is the pairwise interaction potential. An extension to
more complex potential forms is straight forward.
The fluxes are spatial averages over the domain Ω . The average
momentum flux is

τΩ = −
1

|Ω|


i,j

cij

δijmivi ⊗ vi + fij ⊗ rij


, (7)

and the energy flux is

jΩ =
1

2|Ω|


i,j

cij


vi


1
2
miv2i δij + φ(rij)



−
1
2
(vi + vj) · fijrij


. (8)

The force fij represents the interaction between atom i and atom
j. The parameter 0 < cij ≤ 1 represents the fraction of the line
connecting ri and rj that lies within Ω , which results in cij = 1 in
case of periodic boundary conditions.

Eqs. (1)–(8) represent the basis of the HMM concept. While the
conserved fields ρ, q, and e are integrated on macroscopic space
and time scales, the fluxes τ and j are estimated as statistical
MD averages on microscales. In fact, we average over length and
time scales much smaller than what is being represented at the
macro scale. The validity of HMM is based on the ergodicity of
MD, a strong separation of both time and length scales, and the
assumption of local equilibrium.

3.2. Non-oscillatory central schemes

The use of non-oscillatory central schemes reduces compu-
tational costs while providing numerical stability. A second or-
der scheme for the two-dimensional case was published by Jiang
and Tadmor [15]. The scheme is a two-step predictor–corrector
method. The first step is based on given cell averageswhose change
in time are estimatedwith the help of computed fluxes through the
surfaces of the cells. Afterwards, the corrector step uses so-called
staggered averaging to correct the predicted midvalues and to re-
alize the evolution of these averages. For the present problem a
two-dimensional system of conservation laws can be written as:
∂tw + ∂xf (w) + ∂yg(w) = 0. (9)
In [15] the time derivative of ∂tw written in terms of spatial
derivatives ∂xf (w′) and ∂yg(w‘) is given as:

w
n+ 1

2
jk = w̄n

jk −
λ

2
f (w′)jk −

µ

2
g(w‘)jk, (10)

To compute the midvalues (10), the approximate fluxes have to be
evaluated. Using these values together with the staged average the
corrector step reads:
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, (11)

where λ = 1t/1x and µ = 1t/1y. As indicated by j + 1 and
k + 1, the new calculated values of w̄n+1 are on the surface, which
means that this is only a half step in space. Fig. 3 illustrates the
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Fig. 3. Illustration of the fluxes f and g through the surface and the conserved
quantities w inside the volume.

conserved quantities inside the volume and the fluxes through the
surface of the volume for one half step. For the full step we need
to execute these half steps twice. A difficult question is what the
spatial derivative looks like on the mesh point. Ref. [15] used the
MinMod limiter scheme to reduce high frequency oscillations and
increase stability [29,30]. The MinMod scheme relies on the maxi-
mum principle for scalar approximations and the direct slopes for
w′ and w‘ are:

w′

jk = MM

w̄n

j+1,k − w̄n
j,k,

1
2
(w̄n

j+1,k − w̄n
j−1,k),
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, (12)
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where

MM{v1, v2, . . .} =


min

p
{vp} if vp > 0 ∀p,

max
p

{vp} if vp < 0 ∀p,

0 otherwise.

(14)

For more details about the staggered average corrector schemewe
refer the reader to [15].

3.3. Kriging

The use of theword ‘‘kriging’’ in (geo-)statistics stands for ‘‘opti-
mal prediction’’. The power of this method lies in its ability to treat
not only scalars, but also vectors located in a high-dimensional
space to predict the value of a vector located at a certain position
in the high-dimensional space by computing a weighted average
of the known vectors in the neighborhood of the point. Making use
of matrix representations for the formulas allows not only for an
efficient implementation for the computation of the predicted val-
ues, but computes an error of the estimation at the same time. In
this paper, we only give a brief introduction about ordinary kriging,
further information can be found e.g. in [31–33].

Suppose prediction of the value Z(s0) at some spatial location
s0 is desired using a linear function of the data of the form

Z ′(s0) =

n
i=1

λiZ(si) (15)

which is both unbiased and minimizes the mean-square error

σ 2
k (s0) = [Z(s0) − Z ′(s0)]2. (16)

Then the optimal λs satisfy an (n+1)-dimensional linear equation.
The minimized mean-square error is given by

σ 2
k (s0) =

n
i=1

λiγ (si − sj) + m, (17)

where λi are the Lagrangian parameters and γ is the variogram.
There are several parameters affecting the result and the error es-
timation of kriging. In fact, all the parameters are contained in the
computation of the theoretical variogram [31], which is a function
describing the degree of spatial dependence of a spatial random
field or stochastic process, in the present case Z(s0). But the empiri-
cal variogram cannot be computed at every lag distance h (distance
between two sample points) and due to variation in the estima-
tion it is not ensured that every variogram is valid. However, krig-
ing only works with valid variograms. To overcome this problem
the empirical variograms are thus often approximated by a model
function that ensures validity [32]. We use the following (spheri-
cal) variogram model [33]:

γ (h) = (s − n)


3h
2r

−
h3

r3


10,r(h) + 1[,∞)(h)


+ n1(0,∞)(h). (18)

The parameters of the variogram are:
1. nugget n: The measurement errors occurring as offset of the

variogram at the origin.
2. sill s: The convergence value of the variogram (variance).
3. range r: The distance in which the variogram (almost) equals

the value of the sill.

For our purpose the spherical variogram model has been the best
choice, since the error estimation needs to be symmetric, too. For
two other models (Gaussian, exponential), we tested the values
themselves were symmetric with respect to negative values, but
the error estimations showed small differences which led to an
asymmetric acceptance of the predicted values. For the present
study, we used the spherical model of Eq. (18) with n = 0.0, s =

1.0 and r = 0.125, leading to the best prediction in our test prob-
lems.

4. Implementation

The key to our approach lies in the use of locality-aware
hashes [34,35] and the database’s set data structure. Essentially,
we create a range along all seven dimensions (e.g. four components
of the strain tensor A, two dimensional momentum density q and
energy density e) of our conserved vector and generate a truncated
hash for each data point, which corresponds to a conserved vector.

While our method could be adapted for many different types of
database, we determined that the following characteristics were
needed:
1. Key-value storage.
2. Distributed.
3. Multiple values allowed per key.
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Key-value storage is essential for fast generation of matching in-
put and output fields, while the ability to allow for multiple val-
ues per key is necessary for locality-aware hashing. As such, we
chose to avoid traditional SQL databases and instead utilize a
NoSQLdatabase [36]with a key-value store approach [37,38].More
specifically, we chose the open-source database Redis [24] due to
its demonstratively high performance and the ability to use its set
data structures to create buckets of nearest neighbors. Redis is an
open-source NoSQL database [36] that maintains the database in-
memory and supports access across a network and, optionally, a
distributed database with consistency and coherence. While the
core is written in ANSI C, there are interfaces for most modern lan-
guages. Specifically, we used hiredis [39], a light-weight C inter-
face, for this implementation. Redismaintains thewhole dataset in
memory to decrease access times and increase performance. Per-
sistence, and fault tolerance, is achieved through a combination of
snapshotting, where the dataset is periodically written to disk, and
an approach that records each operation in an on-disk journal and
periodically applies the operations to conserve space. This combi-
nation greatly decreases the time required to store the database
while also ensuring that the current state can be reconstructed at
any point.

For the purpose of scalability, Redis utilizes a hierarchical mas-
ter–slave replication [24] inwhich each instance of Redis is capable
of being both a master of some instances and a slave to another.
This allows data to be replicated across the entire distributed
database for the purpose of scalability and resiliency through data
redundancy. The use of a distributed database is essential due to
the large number of TCP/IP connections requested by the parallel
tasks.

When processing a point, we generate the set key based upon
the conserved vector to obtain the bucket and check the CoMD
database, a database consisting of previously computed values ob-
tained via CoMD [27]. CoMD is a molecular dynamics proxy appli-
cation, which we modified for our specific problem, as described
in Section 5. Prior to returning the results of the execution, we sort
the conserved vectors with respect to their distance to the actual
value so that the first returned value can be checked to determine if
it fulfills a threshold, which can be zero, to see if the computed re-
sult is already in the database. If the first returned value fallswithin
the threshold, we can write the result directly to the field.

Otherwise, we then check the gradient in four directions. If the
gradient smaller than a specific threshold, we repeat the process
with the kriging database. If it is not, we use CoMD to compute
said point. Furthermore, the gradient threshold is dynamically
adjusted, based on the number of successful kriging tasks. E.g. if
all kriging tasks have been successful the gradient threshold gets
increased. The initial value of the kriging threshold depends on
the initial strength of the strain. Adjusting the kriging threshold
dynamically during the runtime ensures that the overhead due to
unsuccessful kriging tasks is minimized (see below).

The kriging database behaves similarly to the CoMD database,
but only contains the results of kriging. In fact, if we speak about
a kriging database we are using the same Redis database but with
another set of keys for the kriging results. Once again we check if
the nearest neighbor falls within the threshold. If not, we perform
kriging to predict the value of the point, as previously discussed. If
this prediction does not fall within a specific error threshold, CoMD
is called on the point (see Fig. 4).

Our implementation is designed around a task-based approach,
with two major types of tasks with drastically varying execution
lengths (shown below in Fig. 9). First a serial CoMD database task
checks for input for the entire macro solver field in the database.
Afterwards, the first tasks added to the parallel execution map
are the kriging tasks, which consist of, first, checking the kriging
database and then either using said value as a result or using
Fig. 4. Schematic of the implementation of the kriging supported adaptive
sampling (KAS) model for stochastic data. Execution starts after some initial
routineswith a check of the database (top of diagram). The execution scheme shows
one loop for computing Eq. (10) or Eq. (11) for a half step in time. Therefore, to
complete one total time step, it is necessary to execute four times the illustrated
scheme over the field.

kriging itself to compute a value. If the value is not sufficient, the
kriging task becomes a CoMD task. The second type added to the
task list are the CoMD tasks, consisting of calls to the CoMD library
to compute the value and writing the result into the database.

By utilizing a task-based approachweare able to take advantage
of the largely embarrassingly parallel nature of HMM while also
accommodating for the drastically varying execution times of
the tasks. Since, any given CoMD task takes approximately the
same amount of time, a kriging task may consist solely of a
database access and the kriging function, and a CoMD call as well.
Additionally, the database access itself involves communication
and is subject to contention.

However, for the purpose of this paper we focused primarily
on the benefits of the kriging technique itself as opposed to any
additional benefits that can be gained through more complex
runtimes. As such, all data have been obtained using OpenMP [40]
and the runtime environment Charm++ [25]. Future work will
consider and utilize more runtimes that can fully take advantage
of our scheme [41].

5. Results

In this section we will present the performance and the stabil-
ity of the method described above. To do this, we investigated the
behavior of the system for two different test problems. The first
test problem (TP1) is a quasi-1Dwave propagation as illustrated in
Fig. 5. The second test problem (TP2) is a circular impact, affecting
all components of the strain tensor (see Fig. 1 time series in Fig. 6).

Unless otherwise specified, the following setup was used. The
MD simulations are based on a defect-free crystal of copper us-
ing an embedded atom method (EAM) interatomic potential [42].
The periodic simulation domain consists of 6 × 6 × 6 fcc unit cells
with lattice constant a = 3.618 Å. The output of the estimated
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Fig. 5. Illustration of the stress (z-axis) and the corresponding tasks (colormap
at the top), for TP1, with a two-dimensional grid containing 100 × 10 grid
points. Dark blue are the CoMD hits, light blue the similar CoMD hits, which are
evaluated with the mapping procedure. Turquoise are database values and green
the kriging database values. The kriging hits are orange and red are the similar
kriging hits, which are evaluated with the mapping procedure like the CoMD hits.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. The figures illustrate a time series of a TP2 simulation with circular initial
conditions of the strain with radius 5 for timesteps 1, 19, 49 and 99. The two-
dimensional grid has 50 × 50 grid points. The colorscheme at the top indicates the
different hit types (dark blue: CoMD, orange: kriging, turquoise: database), while
the illustration on the bottom shows the strength of the strain. The anisotropy
due to the copper crystals strain–stress relation at the MD level is leading to the
observed asymmetric response. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

virial stress and the energy density are a time-average over the last
20% of our MD simulation. We integrate for a time τ = 10 ps us-
ing velocity-Verlet time steps of size 1t = 10 fs. On the macro
scale level we introduce a strained region in an unstrained system
thermalized to the temperature 129 K. This equilibrium configura-
tion has energy density e = −0.296 eV/Å3. The time and length
scales of the macro solver can be independent of the micro scale,
but with no explicit system in mind we do not introduce any sep-
aration of time and length scale. Therefore, the total area on the
macro scale corresponds to either 217.08 nm × 21.708 nm (TP1)
or 108.5 nm × 108.5 nm (TP2), both for total simulation time of
0.5 µs.

Table 1 shows the wall-clock simulation time for our two test
problems (TP1 and TP2) using various feature combinations. The
direct numerical simulation (DNS) result is the time that would
have been required if CoMD simulations were always executed
at every volume element, every timestep, as in the original HMM
approach. In case of mapping, CoMD tasks with duplicated input
parameters are removed. The third case utilizes the CoMDdatabase
(CoMD DB) on top of the mapping scheme. Finally, the remaining
Table 1
The table shows the absolute simulation time for our two test problems (TP1
HMM step/N = 0.4, TP2 HMM step/N = 0.08) having different features disabled/
enabled and different compute node/cores to tasks ratios. The results are shown
in seconds. The first row shows the result for the DNS run, e.g. only CoMD tasks
are executed. The measurements in case of mapping enabled are done by removing
all duplicated tasks. The third row shows the results with enabled CoMD database.
The execution times for the runs with enabled kriging as well as enabled kriging
database are shown in the last two rows. All measurements were executed on AMD
Opteron Processor nodes.

Features TP1 np = nt TP1 np < nt TP2 np < nt

DNS 408591.0 1109110.0 325152.0
Mapping 40859.1 110911.0 325152.0
CoMD DB 40853.2 67498.6 145379.0
Kriging 40454.2 45322.1 118231.0
Kr. DB 40256.1 46221.6 118908.0

Fig. 7. The distribution of different tasks for the flat wave example of Fig. 5.
Obviously the mapping of similar points (duplicates) leads to a reduction of the
workload by 90%. Due to the evolved state of the wave, which almost reached
the periodic boundaries in the x-direction, the amount of plain database values
is reduced. While the access of plain database values is reduced, the amount of
successful kriging database access is already notable at the front of the traveling
waves. Besides the direct access of the database values, the values are used to
execute the kriging, which leads to a reduction of almost 50% in this example. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

cases are using the kriging feature (with duplicate mapping for
kriging tasks as well), which can be supplemented by a kriging
database (Kr. DB).

Mappinghelps to reduce 90%of the execution time for TP1 (with
perfect symmetry in the y-direction), but has no benefit for TP2.
When the number of compute nodes/cores np is smaller (np <
nt ) than the maximum number of independent tasks nt , enabling
the CoMD database leads to an speedup of ≈65% on top of the
mapping speedup. And furthermore, the kriging predictor leads to
another speedup up to ≈49% in the first case. The kriging database
feature must be treated carefully, since it can even increase the
total simulation time, caused by too few successful hits. In case of
an equal number (np = nt ) of nodes/cores and tasks only minor
differences appear, since the total time is limited by the execution
time of the CoMD tasks (see Table 1 for details).

5.1. Test problem 1 (flat wave)

In this example an initial deformation of 4% in the x-direction is
applied to 10% of cells in the center of the simulation area (e.g., a
grid of 100 × 10 cells per volumes in the present example). The
initial condition has to be applied on the macro scale, since our
adaptive sampling relies on the conserved quantities in the first
place. In order to present the results of our simulations, we first
take a look at the dynamic workload and the reduction of the
actual number of executed CoMD instances per time-step. Fig. 7
illustrates the different tasks executed to provide the necessary
data for each finite volume. The snapshot was taken after a few
integration steps. In the regions with high strain, many CoMD
tasks (dark-blue) need to be executed, whereas kriging (red) can
be successfully applied to the front of the wave. In the so-far
unaffected area, the database can be directly used (turquoise).



144 D. Roehm et al. / Computer Physics Communications 192 (2015) 138–147
Fig. 8. Percentage of total tasks per quarter step for TP1. Turquoise diamonds show
the number of CoMD database tasks and green triangles represent the number
of kriging database tasks. The dark-blue line shows the number of CoMD tasks,
while the light-blue line shows the number CoMD duplicates. The red line shows
the number of kriging tasks, while the orange line shows the number of kriging
duplicates. For themeasurementweused a database threshold of 10−5 and a kriging
error threshold of 10−3 . After an increase of the CoMD tasks at the beginning, due
to the evolving of the wave through the area, the number of CoMD reaches a stable
value at around 4% of the total number of tasks. All the other 96% of the tasks are
either evaluated with the help of kriging (6%), the databases or are duplicates. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8 shows the percentage of each of the different tasks in a
solution of the system over a long simulation run (0.5 µs) that
results in waves traveling several times throughout the system.
However, due to the finite volumes so called numerical friction
leads to a decreasing strength of the strain over time. Hence, after
the very first stepwith only twoCoMDhits (due to initial condition,
resulting in 0.2% of the total number of possible hits), the database
can be used to access exact values for the unaffected nodes. As
the wave evolves over time the number of database values that
can be directly reused decreases and the number of necessary
CoMD hits increases. This is offset by an increase in the number
of duplicate hits our method is able to detect and eliminate as well
as an increase in the number of opportunities for kriging (and the
detection of duplicate kriging hits).

In addition to the use of the CoMD database as a plain lookup
table, we introduced a database error threshold, which allows
for the use of results gained by input values that are within the
threshold. Hence, the CoMD database hit rate depends on that
database threshold. For this specific test problem the number of
CoMD and kriging tasks reach an almost constant rate for the long
time limit. Apparently, only a small number of tasks are using the
kriging database, where no threshold is allowed. Restricting the
kriging database to exact results only is due to the already present
error of the predicted values. Allowing for valueswith an additional
error as input for the prediction would result in an uncontrolled
error exposure throughout the system.

Fig. 9 shows the time required by each task during the simu-
lation. We focus on the time in terms of tasks, as we dynamically
schedule tasks so as to support a wide range of host system con-
figurations with a varying number of available CPU cores. E.g. a
CoMD task takes about 20 s on an AMD Opteron Processor 6168
core, which is substantially longer than any other tasks. Since the
actual execution time is strongly affected by the underlying hard-
ware, we normalize our measurements by the CoMD execution
time. The database task, which includes searching the bucket and
sorting the result for the entire field, takes, at most, about 0.007%.
While the kriging database tasks become increasingly slow as the
database gets populated, we measure it to take, at most, 0.01%. To
avoid excessive database access for the kriging, we restrict the in-
put to the ten nearest neighbors. With the latter, kriging itself is,
Fig. 9. Duration of different tasks per quarter step normalized by the CoMD
execution time for TP1. For every hit type the time was measured, showing the
relative duration independent of the available parallelization. Obviously, the CoMD
tasks takeway longer compared to the almost negligible duration of the other tasks.
The CoMD task includes the time storing the value in the database, too, despite this
time is negligible. The database task contains the total time it takes to check, sort
and get the desired bucket/value for the values within the threshold for the entire
macro-solver grid. The same is true for the kriging database task. The kriging task
includes sorting and getting a bucket from the database, executing the kriging and
if successful storing it in the kriging database. A database threshold of 10−5 and a
kriging threshold of 10−3 have been used.

Fig. 10. Percentage of tasks per total simulation as dependence on error threshold
for the kriging estimation for TP1. The figure shows the percentage of hits by the
different tasks over the kriging error threshold. The database threshold is kept
constant with 10−7 . Apparently, for the lowest threshold the number of kriging hits
drops to zero, because the database catches all possible kriging tasks in advance. As
expected with increasing kriging threshold the total number of successful kriging
tasks rises.

again, much faster, despite the need to both read from andwrite to
the database. This is due to the non-blocking nature of writes with
the Redis database.

Next, we investigate the influence of certain thresholds on the
actual number of different tasks during the example simulation.
We set up two different thresholds: one for the acceptance of the
kriging result and one for the acceptance of the database value.
Fig. 10 shows the number of task hits as a percentage of the total
simulation over the size of the kriging error threshold. As the
error threshold for the kriging increases, the number of successful
kriging tasks also increases, while the number of CoMD tasks and
database tasks decreases. In the first place mainly database hits
are reduce/replaced by the kriging task, but for larger thresholds
a significant number of CoMD tasks are replaced, too. For this
particular test problem a kriging threshold larger than 10−4 leads
to more kriging tasks than CoMD tasks, which results in a massive
speedup.
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Fig. 11. Percentage of tasks per total simulation as dependence on error threshold
of the database results for TP1. The plot shows the percentage of hits with a kriging
error threshold, which is always one order of magnitude bigger than the different
database thresholds, in order to have at least some points successfully evaluated by
the kriging. This leads to an increasing number of successful database hits as well
as kriging for low thresholds. For an error threshold of 10−4 so many database hits
are successful, that only a minor number of tasks is left to be either evaluated by
CoMD or the kriging. Apparently, for thresholds larger than that all hits are either
database or CoMD type.

Fig. 11 shows the execution of different tasks as a function of
the database error threshold. As the database error threshold in-
creases, the plain database hits are increasing. Due to the fact that
we have to increase the kriging error threshold at the same time, to
ensure at least some successful kriging tasks, the total number of
kriging tasks rises for small thresholds, too. However, for a thresh-
old of 10−4 the number of successful database hits is so large that
the number of kriging tasks is decreasing, while for error threshold
beyond that every tasks is either a database hit or a CoMD task.

In summary, increasing error thresholds leads to a reduction
in the number of expensive CoMD hits and therefore reduces the
execution time significantly. Due to our specific implementation,
the database always gets checked in the first place, reducing the
number of possible kriging tasks (e.g. especially in case of using the
same error threshold for the database and the kriging). In turn this
gain in performancemust be paid with a reduction in the accuracy,
which appeared to be always at least in the order of the thresholds.

Besides the performance of the model, we have to be careful
about the stability of the simulation. In order to check the effects of
the different thresholds and statistical errors, we applied Gaussian
noise onto the CoMD as well as the database and kriging results.
Our method seems to be extremely stable and is able to provide
reliable results, even with Gaussian noise about the order of the
values of the fluxes. However, at some point the kriging prediction
breaks down which results in an increase in the number of CoMD
tasks.

5.2. Test problem 2 (circular impact)

The flat wave example discussed above is appropriate for inves-
tigating the mapping of the duplicated CoMD/kriging hits and the
basic behavior of the prediction via kriging. But for simulations of
impacts like the laser application on a copper plate it suffers from
simplicity. In this section, we will apply D2KAS on the most diffi-
cult setup: A circular ‘‘impact’’ in the center of the plate affecting
all components of the strain tensor and interference due to the pe-
riodic boundaries. We start with a setup similar to the flat wave
example, but in a regionwith 50×50 cells (≈10,000 nm2) and a de-
formed area in the center with radius r = 5.425 nm. Again, we in-
duce a deformation of 4% in x-direction but this time in y-direction,
too. In order to gain the maximum complexity we also introduce
Fig. 12. The different tasks for the circular example are illustrated after a small
number of time steps. Obviously, there are no duplicates (compare TP1) and
therefore all the points in the center have to be evaluated by single CoMD runs.
In this example a rather high database error threshold of 10−4 was used, leading
to the observed circular area of kriging duplicates surrounding the CoMD hit area.
Without the database threshold a squared area of kriging hits would surround the
CoMD hits (based on the rectangular grid). In the area with a small gradient in the
strain the kriging can reduce the number of CoMD hits significantly.

an initial extension of 2% onto the xy- and yx-components of the
strain tensor. The resulting simulation is illustrated in a times se-
ries of snapshots shown in Fig. 6.

After the initial deformation the wave travels throughout the
system. During the simulation the number of CoMD hits as well as
the number of successful kriging tasks are rising, while the num-
ber of plain database hits is decreasing. Fig. 12 shows a snapshot
of the applied tasks. The circular task distribution is a result of the
combination of all three thresholds. As the center has to be com-
puted by CoMD, the border region can be successfully evaluated
with the help of kriging and database values. The circular shape is
a direct result of the database threshold because of the underlying
scheme; a quadratic/rectangular area. Without a database thresh-
old (threshold = 0) kriging tasks are applied in this area. But with
the database threshold taking away the tasks with the smallest de-
viations, the resulting circular shaped area appears.

Fig. 13 shows the percentage of successful hits for our second
example system.We observed that the number of necessary CoMD
tasks is rising to almost 90% in the end. This is due to the complexity
of the setup leading to an interference of waves throughout the
periodic boundaries. In the first part of the simulation the number
of CoMDhits is continuously rising aswell as the number of kriging
hits, while the number of plain database values is decreasing, as in
the flat wave example. But since there are no duplicated hits the
actual number of hits is much larger than in the flat wave example.
In Fig. 13 one recognizes a dip in the number of kriging hits around
0.4, which refers to the wave reaching the periodic boundaries.
After this increasing complexity, the number of kriging hits drop
to a fairly small amount of about 20%.

This worst case scenario shows the limit of the method, where
eithermore advanced krigingmethods or additional adaptive sam-
pling methods need to be applied. However, the basic question is
how realistic this worst case scenario is with respect to any pro-
duction run. Since, we are interested in the simulation of compa-
rable large metal plates, where waves of different complexity can
travel through leading to small regions of high strain and large al-
most unaffected regions. Under such circumstances, the largely un-
affected regions will consist of a number of database accesses and
detected duplicate hits comparable to the quasi-1D wave. There-
fore, this methodology is sufficient to reduce the number of CoMD
hits, which can be handled by state-of-the-art supercomputers.
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Fig. 13. Percentage of tasks per quarter step as trend over the total simulation
run (see Fig. 6 for setup). Red diamonds show the number of database tasks and
black triangles are the number of kriging database tasks (rare in this case). The
blue line is the number of CoMD tasks and the green line is number of kriging
tasks. We used again a database threshold of 10−5 and a kriging error threshold
of 10−3 . The number of CoMD tasks as well as the number of kriging tasks is
quadratic as expected and shows a remarkable kink at time 0.4 when the wave
reaches the periodic boundaries. Due to the strong interference of the wave at the
periodic boundaries the number of necessary CoMD hits rise to almost 90% and the
remaining tasks aremainly evaluatedwith the help of kriging. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

6. Conclusion

The presented scheme combines a prediction method with a
heterogeneous multi-scale model for stochastic data (common to
finite temperature processes) in order to introduce a new adaptive
sampling scheme. The scheme is supported by a distributed cloud
database utilized with key-value storage. The performance of
the implementation in a parallel high-performance framework
(Charm++) has been investigated for two different test problems,
illustrating that a hugenumber of CoMD tasks canbe savedwithout
affecting the stability of the method. The framework efficiently
distributed the independent MD and prediction tasks on state-of-
the-art compute clusters. Furthermore, additional features like the
mapping of similar tasks and the use of a different key for the
kriging results have been discussed.

Our Distributed Database Kriging for Adaptive Sampling
method (Charm++ version) showed that if the maximum num-
ber of tasks is larger than the number of compute nodes/cores –
which is usually the case – a speedup of a factor of 2.5–25 can
be achieved even for our small test problems. Our adaptive sam-
pling method with the distributed cloud database may provide
the base for further enhancements of the physics including mi-
cro/mesoscopic details like defects, fractures as well as crystal do-
mains. It also shows the necessity of dynamic runtime systems and
schedulers that can deal with the load imbalance arising from the
varying number of tasks in every time step. The distribution of the
tasks by these frameworks cause high traffic, which can only be
handled by the distributed database support. Using a (exchange-
able) cloud database in a parallel high-performance framework
and the incorporation of next generation techniques illustrate the
versatility of our method [41].
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