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TADSim: Discrete Event-Based Performance Prediction
for Temperature-Accelerated Dynamics
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Next-generation high-performance computing will require more scalable and flexible performance predic-
tion tools to evaluate software–hardware co-design choices relevant to scientific applications and hardware
architectures. We present a new class of tools called application simulators—parameterized fast-running
proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices
for the algorithmic method and hardware options provide a rich space for design exploration and allow
us to quickly find well-performing software–hardware combinations. We demonstrate our approach with a
TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically
complex and parameter-rich member of the accelerated molecular dynamics (AMD) family of molecular dy-
namics methods. The essence of the TAD application is captured without the computational expense and
resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying
algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of
time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the
otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as spec-
ulative spawning of the compute-bound stages, and predict performance improvements without having to
implement such a method. Validation against the actual TAD code shows close agreement for the evolution
of an example physical system, a silver surface. Focused parameter scans have allowed us to study algorithm
parameter choices over far more scenarios than would be possible with the actual simulation. This has led
to interesting performance-related insights and suggested extensions.
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1. INTRODUCTION

New computer architectures, software stacks, and algorithms will be necessary to
further advance scientific research. These changes make challenges related to power
consumption, cost of data movement, limited memory, data locality, extreme concur-
rency, and resilience increasingly pressing, especially as we progress toward exascale.
Current architectural paths to exascale include multicore high-end CPUs such as In-
tel’s X86, manycore/embedded simpler low-power cores from embedded systems, and
GPU/accelerated highly specialized processors from the graphics/gaming market space
such as NVIDIA’s Tesla and Intel’s Xeon Phi Many Integrated Core (MIC). The high-
performance computing (HPC) field has become an adopter of these technologies. The
HPC community, driven—among others—by the national security needs of the national
laboratories of the U.S. Department of Energy, is involved in “computational co-design”
efforts using their traditional software portfolio of physics applications to influence
and be influenced by next-generation architectures [U.S. Department of Energy Office
of Science 2012; Advanced Simulation and Computing Program 2012]. Computational
co-design refers to the close coupling of hardware and software design. Co-design is a
very well established set of methodologies in embedded systems [Wolf 1994]; extending
these concepts to HPC is a DOE science strategy [U.S. Department of Energy Office of
Science 2014].

A view of co-design is that of a performance-guided search and selection from a
design space of software and hardware options [Eidenbenz et al. 2012]. For each set
of hardware–software choices, we predict the performance using scalable distributed
discrete event simulation. The performance measures of interest are runtime metrics
such as wall clock time (WCT), speedup, or energy usage. Based on these results, an
optimization step—using either a scan of the design spaces or a guided search using
optimization techniques such as genetic algorithms, tabu search, or simplex optimiza-
tion methods—identifies the optimal instance in the search space. Parameterizations
define the possible software and hardware options, and each can be represented at
a different level of fidelity. For example, when focusing on performance prediction of
different algorithmic variants of the software implementation of a method, a coarse
model may be sufficient at the hardware level.

The central role of performance prediction via simulation in our co-design approach
is the main topic of this work, and here we focus primarily on exploring the software
design space. We introduce the concept of a parameterized application simulator. The
key stages of an application are modeled as discrete events while abstracting time-
intensive parts or kernels of the application. The logic of an application or pseudocode
is simulated, including loops, control flow, and termination conditions, similar to a
state machine (Figure 1). Designing an application simulator requires identifying the
time-intensive elements, quantifying the different algorithm steps in terms of those ele-
ments, abstracting them out, and replacing them by the passage of time. A low-fidelity
hardware architecture model is defined, considering parameters such as processor
speed, core counts available, communications time, and thread overhead. Instrumen-
tation is available for the collection of performance metrics. The software and hardware
parameters specified in the simulator define the hardware and software design spaces
that we explore. Application simulators allow for fast exploration of application design
spaces, testing of new algorithmic extensions before actual implementation, and even
testing of proposed hardware architectures that do not yet exist.

Here we use an accelerated molecular dynamics (AMD) method, namely
temperature-accelerated dynamics (TAD), to illustrate this application simulation con-
cept. The development of this co-design approach was guided by this algorithmically
complex and parameter-rich method.
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2. THE APPLICATION SIMULATOR CONCEPT

The application simulator approach is most useful for performance analysis of applica-
tions that do not have predictable progression prior to runtime. Indeed, performance
prediction of typical bulk synchronous parallel (BSP) approaches in most current-day
physics simulation codes can often be accomplished by analytical methods. We view
PDES as the most appropriate solution for modeling complex applications at the al-
gorithmic level, when cycle-accurate results are not required. As we move toward
next-generation HPC, asynchronous programming models are becoming more com-
mon, requiring alternative approaches. The use of PDES for performance prediction is
then an attractive choice. This approach could be especially powerful in cases where
the runtimes of certain sections of the codes are not constant but can vary significantly
from one case to the next (e.g., if a nonlinear problem needs to be solved, or when the
stop time of some procedure is a random variable). Assessing the performance of vari-
ous implementation and parallelization strategies would be best approached by direct
simulation, as analytical methods would rapidly become tedious.

An application simulator is ideally suited to represent an algorithm that spends
most of its runtime performing some atomic unit of work. This can be a frequently
used computationally intensive calculation, a data access/movement pattern, or a com-
munication sequence. The algorithm can then be represented as a state diagram of a
repeatable loop sequence of stages with a stopping condition, where each stage’s run-
time is specified in atomic units of work. This allows us to abstract out time-consuming
computations, yielding a fast-running DES proxy. Stochastic decision can be included
to drive branching, stopping conditions, asynchronous communication, and/or spawn-
ing of subtasks. Software, hardware, and algorithm parameters are then defined. The
parameters reflect the value of tunable constants or allow for different algorithmic
choices. These parameters can be specific or general based on the level of modeling
abstraction desired. Instrumentation is added to collect performance, logic-based, and
resource usage metrics. Due to the absence of executing work units, precomputed in-
formation may be necessary to drive the simulation. Details of the dynamics can be
obtained by mining the event progression of a simulation carried out with a standard
version of the program.

Currently, building an application simulator is a manual effort, as automated tools
are not yet available. Knowledge elicitation from domain experts is required.

3. RELATED WORK

The choice of parallel discrete event simulation (PDES) [Banks et al. 2008;
Fujimoto 1990; Liu 2010] complements other performance prediction methods that
include closed-form analytical models [Bauer et al. 2012; Spafford and Vetter 2012],
semianalytical models [Barker et al. 2006, 2009], simulation [Bagrodia et al. 1999;
Rodrigues et al. 2011], emulation [Xia et al. 2004; Santhi et al. 2013], and hybrid
simulation-emulation [Binkert et al. 2011; Calheiros et al. 2012; Zheng et al. 2004].

We note that the Scalable Simulation Toolkit (SST) [Rodrigues et al. 2011; Hendry
and Rodriguez 2012] is a laudable example of PDES use in performance prediction.
Unlike our application simulators, SST requires proxy application code as input and
produces simulations that run slower than the actual application, which does not allow
for exploring large parameter spaces and quick testing of new algorithmic ideas. The
faster-running SST/macro coarse-grain simulator runs a skeletonization of an applica-
tion code for studying the effect of network parameters and topology on performance.
A skeleton preserves the control flow of communication code but does not retain the
domain algorithm behavior.

The simulation of software simulations is not new. The SIMSIM metasimulation has
been used for load balancing of parallel and distributed simulation systems [Ewald
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et al. 2006] to understand behavior and performance characteristics. Application simu-
lators are used to explore and understand the behavior of systems over many scenarios.
A methodology was developed to predict the performance of a distributed simulation of
an HLA middleware system prior to implementation [Gianni et al. 2010]. Likewise, the
performance of algorithmic extensions can be evaluated prior to implementation using
application simulation. The SONSim second-order simulation was used to predict per-
formance for computer network simulations [Andelfinger and Hartenstein 2013]. Pa-
rameters related to different topologies (e.g., interconnected subnetworks, peer-to-peer
networks, and wireless networks) and hardware choices (e.g., Ethernet and Infiniband
interconnects) were used to assess whether the simulation would benefit from paral-
lelization. Software and hardware model parameter choices were available to explore
the design space for application simulators, and the abstract hardware model allowed
for reasonably accurate performance predictions.

In cases where analytical models are too cumbersome, another valuable alternative
is experimental algorithmics [McGeoch 2012]. The focus is on empirical methods to aid
in building better algorithms and understanding performance given a set of conditions
and assumptions [McGeoch 2007]. As an example, this approach has been used to
understand cache performance for sorting programs and produce more cache-oblivious
ones. Similarly, an application simulator of a physics code can be used to understand
the performance under many parameterized scenarios not previously explored.

Simulation was shown to be a viable approach for performance prediction of
stochastic algorithms using a machine-learning approach in Jeschke et al. [2011].
Parametrized components or subalgorithms serving as elements of a design space are
composed in different combinations to represent the domain code of interest. The use
of small benchmark models was shown to provide valuable insight into the algorithm
performance.

Another co-design approach to design space exploration is driven by the notion of a
mini-application or mini-app from the Mantevo project (mantevo.org). Here, a mini-app
is a self-contained proxy for a real scientific code that contains key performance aspects
of this type of application. They are written to be amenable to refactoring or change but
representative enough to be useful in the scientific problem domain. These open source
proxies are available to computer hardware vendors and software stack developers
to study and improve application performance. They operate either stand-alone or in
simulated environments. In contrast, an application simulator is a virtualization of a
scientific code in the form of an event-based simulator. The hardware environment is
represented only at the level that is necessary to explore a given domain codebase. Some
design choices can be expressed as parameterized options. Both approaches require
refactoring or rewrites for exploring different programming models and significant
algorithm changes.

4. APPLICATION TO MOLECULAR DYNAMICS

As a first application of this methodology, we target atomistic simulation methods in the
molecular dynamics (MD) family. MD is a computer simulation technique for modeling
the physical evolution of interacting atoms by numerically solving their equation of
motion. To carry out the integration, forces acting on atoms are derived from a potential,
a so-called molecular mechanics force field. These calculations, commonly called force
calls, are the computational core and dominant cycle burner in any MD code. MD is
widely used [Rapaport 2004] in materials science [Steinhauser and Hiermaier 2009],
chemical physics [Clark 1985], and the modeling of biomolecules [McCammon and
Harvey 1988].

Conventional MD allows one to access time scales on the order of hundreds of
nanoseconds to microseconds. Efforts to explore longer time scales have led to the
development of AMD methods that provide access to time scales on the order of
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milliseconds to seconds or more. For many material systems, the dynamical evolution
on these longer time scales is characterized by infrequent events, in which the system
makes occasional transitions from one state to another (i.e., long periods of uneventful
vibrations are punctuated by rare topology changes). The AMD methods exploit this
infrequency characteristic to reach longer times.

Three such AMD generalizations have been proposed [Voter et al. 2002; Perez et al.
2009]. These techniques include simulating at a higher temperature to speed up tran-
sitions, parallelizing time through running multiple replicas in parallel, or modifying
the interatomic potential in a controlled way. In all of these cases, one has to then map
the results (in a statistical sense) into the original, unbiased conditions. AMD has been
used to investigate a wide range of important phenomena occurring at the atomic scale,
such as the velocity dependence of friction during friction force microscopy experiments
[Li et al. 2011] and radiation damage annealing processes relevant for nuclear struc-
tural materials [Bai et al. 2010], to name only a few. The temperature-raising method,
TAD—a complex and algorithmically interesting AMD method—is the subject of the
present work.

In our TAD application simulator, TADSim, we exploit the fact that the force call
is by far the most computationally expensive part of any (A)MD method, accounting
for at least 90% of all cycles. The runtime of a force call depends on the interatomic
potential function (the gradient of which is proportional to the forces acting on each
atom), the number of atoms, and the number of cores available. The force call is con-
sidered to be the atomistic time unit, abstracted out, and represented by the passage
of simulation time, enabling fast simulations while allowing for reliable predictions of
the application’s runtime. As shown in Figure 1, the TAD algorithm is then expressed
as a sequence of stages, each represented by an event, and whose cost is measured
in required number of force calls. We focus at a detailed level of the algorithm using
specific parameters, whereas the hardware is viewed at a higher level and described
using more general parameters.

5. TEMPERATURE-ACCELERATED DYNAMICS METHOD

In this section, we will introduce the algorithm and discuss the parameters used for per-
formance prediction. For a detailed discussion of TAD, we refer the reader to Sorensen
and Voter [2000]. TAD is an algorithm for reaching long time scales in MD simulations.
With few exceptions, direct MD is limited to a maximum simulation time on the order
of a single microsecond, due to the requirement that the integration timesteps are short
enough (∼10−15 s) to resolve the atomic vibrations (∼10−13 s). For most materials, the
dynamical evolution on these longer time scales is characterized by infrequent events,
in which the system makes occasional transitions from one state to another. An indi-
vidual state is a 3N-dimensional potential basin (where N is the number of moving
atoms), shaped parabolically near the minimum. An example of such an event is the
jump of a vacancy in a solid or an atom on a surface, and much more complex events,
sometimes involving many atoms, can occur as well. The AMD methods, of which TAD
is one, exploit this infrequency characteristic to reach longer times. We chose TAD for
this initial study because its rich set of parameters make performance prediction at
different settings difficult.

In a direct MD simulation, once an interatomic potential and appropriate boundary
conditions have been specified, one simply integrates the classical equations of motion,
perhaps modified to take into account coupling to a thermal bath at a desired temper-
ature T . The MD trajectory, within its microsecond limitation, will then make these
occasional transitions from state to state automatically. The system vibrates in this
basin many times until a fluctuation causing a large excursion takes the trajectory
over a ridge top to an adjacent basin. There is a saddle point associated with this tran-
sition (the point on the ridge top with zero gradient of the potential energy and one

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 15, Publication date: April 2015.



15:6 S. M. Mniszewski et al.

negatively curved direction corresponding to the reaction path), and there is typically
a large number of adjacent basins in which the transition can take place.

The key to reaching longer time scales for this kind of system is to pick one of
the adjacent states, and an associated time, for the next transition. The probability
for transitioning to a particular adjacent state is proportional to the rate constant
for escape to that state. The rate constant to each of these states can be accurately
approximated using transition state theory [Marcelin 1915], and if all the adjacent
states are known, one escape path can be chosen at random, weighted by its escape
rate. Because the first-passage time is exponentially distributed for such rare events,

p(t) = ke−kt, (1)

where the exponent k is the sum of the rates over all escape paths out of the state, an
appropriate time for the escape can be generated using

tRandom = (1/k)ln(1/r), (2)

where r is a random number distributed uniformly on (0,1]. This stochastic procedure,
known as kinetic Monte Carlo (KMC) [Bortz et al. 1975; Voter 2007], can be used to
advance the system from state to state. The list of adjacent states to which the next
transition might occur can be generated either by intuition or by a procedure known as
adaptive KMC, in which most or all possible saddle points are sought through randomly
initiated searches [Henkelman and Jónsson 2001].

Here we focus instead on the AMD approach: we let the trajectory itself find the
transition event, as it would in direct MD if we waited long enough, but we modify
the dynamics such that the trajectory picks this escape more quickly. The advantage
is that only one escape path (or, in the case of TAD, a few escape paths) must be
found, releasing us from the burden of trying to find all escape paths. The challenge,
though, is to design the modified dynamics in such a way that the relative proba-
bilities of the different escape paths are preserved as accurately as possible. In the
TAD method, this acceleration is achieved by raising the temperature of the system
while correcting for the tendency for transitions to occur in a different order at high
temperature. In the following, we briefly describe TAD, and we define and explain the
various TAD parameters that we will vary in the TADSim simulations presented in this
article.

In TAD, we advance the system from state to state at a temperature TLow using in-
formation from simulations at a higher temperature THigh. Temperature control during
these simulations is provided by a Langevin thermostat, such as by using the Langevin-
Verlet integrator in Allen and Tildesley [1989], which utilizes a sequence of random
numbers. Starting from some configuration point (positions of all the atoms) RStart in
the initial state (state A) of the system, we first thermalize the system by evolving
the trajectory for a time tTherm so that it loses its memory of the initial condition RStart
(block 1 in Figure 1). At the end of each thermalization stage (and perhaps multiple
times during the thermalization time), we interrupt the trajectory and perform a tran-
sition check (block 2 in Figure 1) to verify that the trajectory is still in state A. If it fails
this check (i.e., if it is found to be in a different basin), the trajectory is placed again
at some position inside state A, and the thermalization procedure is started from the
beginning. We discuss below how transition checks are performed.

Assuming that the thermalization stage has succeeded, so that we have prepared
a properly thermalized trajectory in state A, the trajectory is continued and official
MD time tHigh begins accumulating (block 3 in Figure 1). At regular intervals, tBlock,
the trajectory is interrupted to check for a transition (block 4 in Figure 1), and this
integration/detection cycle is repeated until a transition to some state other than A
(e.g., state j) is detected.
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Fig. 1. Serial TAD algorithm as an execution flow of discrete events in TADSim. Blue blocks require force
calls and green blocks do not.

Transition checks, which play an important role in TAD, are achieved by using the
forces on the atoms to minimize the energy with respect to the geometry R (e.g., with a
steepest-descent or conjugate gradient algorithm) and comparing it to RMin, the known
minimizer for the current state. If no transition has occurred, it typically takes a few
to a few tens of force calls to conclude that the geometry is converging to RMin, whereas
if the system has made a transition to a new basin, much tighter convergence must
be achieved before a transition can be declared, so a larger number of force calls is
required. The determination of whether the transition to state j has been seen before
takes place in block 5 of Figure 1.

The time of this first transition to state j, tHigh
j is taken to be a random time

distributed uniformly on the interval of the most recent block of MD—that is,
tHigh

j = tHigh − rtBlock, where r is a random number distributed uniformly on [0,1].
If this is a transition that has not been seen before, we then initiate a search to find
the saddle point that connects state A with state j using the nudged elastic band
(NEB) method [Jónsson et al. 1998] (block 6 in Figure 1). In brief, the NEB approach
relaxes a chain of configurations that connect the initial to the final state, in which
each pair of adjacent configurations is connected by a 3N-dimensional spring. At con-
vergence, the highest-energy configuration in this chain gives a good approximation to
the saddle-point energy.

A key concept in the TAD method is that each transition event observed in the tra-
jectory at high temperature can be mapped onto a transition event in a corresponding
hypothetical trajectory at the low temperature. At TLow, the time associated with the
transition will be longer, and the order in which the transitions occur will in general
not be the same as at THigh. However, within the harmonic approximation to transition
state theory (HTST) [Vineyard 1957], the virtual transitions at TLow generated in this
way (the escape events and associated times) are in fact indistinguishable from those
that would be generated by a long trajectory integrated directly at temperature TLow.
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In HTST, the escape rate to an adjacent state j is given by

kj = ν0 jexp(−Ej/kBT ), (3)

where ν0 j is a temperature-independent pre-exponential factor, kB is the Boltzmann
constant, and Ej is the barrier height, ESaddle, j − E(RMin). The pre-exponential factor
can be computed from the normal-mode vibrational frequencies at the minimum and
at the saddle point, although in the TAD method we do not need to do this. Note that in
this approximation the only temperature dependence in the rate comes from the barrier
height Ej . Thus, once we have found the saddle point associated with the event, we
can compute the ratio of the rate constant at THigh to the rate constant at TLow, and
similarly we can compute the appropriately sampled time at TLow using

tLow
j = tHigh

j

(
kHigh

j /kLow
j

) = tHigh
j exp(Ej(1/kBTLow − 1/kBTHigh)). (4)

This gives us a point on our low-temperature time line at position tLow
j (block 7 in

Figure 1). We now repeat this procedure, beginning with a fresh thermalization in
state A and continuing to accumulate tHigh. Each time we detect a transition, we find
the saddle point and use Equation (4) to place a point on the low-T time line.

If we continue this high-temperature trajectory long enough, we will observe one or
more events for every possible escape path out of state A, and each of these events will
have an associated time at TLow for this particular realization of the dynamics. We can
identify the shortest-time event at TLow as the transition that would have occurred first
at TLow (at a time tLow-Shortest), and we can move the system to the state associated with
this event.

The second key concept in TAD, the one that allows us to obtain a computational
speedup (or boost) relative to direct MD, is that we can define a time, tStop, at which
it is safe to terminate the high-temperature trajectory, knowing that with a desired
confidence we have already observed the first low-temperature event. To define this
stop time, we make the additional approximation that there is a lower bound νMin on the
pre-exponential factors in the system, such that ν0 j ≥ νMin for all reaction pathways
out of A or any other state the system may visit. We also introduce an uncertainty
parameter δ, which defines the confidence level 1 − δ for our assertion that we have
found the first event.

We can illustrate the TAD procedure, and derive the stop time, using an Arrhenius-
like graphical representation. In a standard Arrhenius graph, one plots the logarithm
of the rate against the inverse temperature so that a reaction rate given by Equation (3)
corresponds to a downward sloping straight line with slope proportional to −Ej/kB and
intercept ln(ν0 j). We make an analogous plot, replacing the logarithm of the rate with
the logarithm of inverse time. On such a plot, as shown in Figure 2, the time progress
of the trajectory at THigh corresponds to nonlinear downward motion on the vertical
line at 1/THigh. For each escape event j at THigh, the time remapping given by Equation
(4) corresponds to extrapolation along a downward-sloping line with slope −Ej/kB to
find its intersection with the low-temperature time line at 1/TLow. It is easy to see that
a high-barrier event extrapolates to a longer time at TLow than a low-barrier event, and
this gives rise to the possibility that the events occur in a different order at THigh. This
is the main characteristic for which the TAD procedure must correct: the first event at
high temperature is typically not the first event at low temperature.

For any reaction pathway with a rate kj , the probability distribution for the first
event will be given by an exponential distribution, as in Equation (1). The probability
that we will see an escape along this pathway at least once before some time t′ can be
found by integrating Equation (1) from zero to t′, which gives the relationship

Prob(First event time ≤ t′) = 1 − exp(−kjt′). (5)
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Fig. 2. Pictorial representation of the TAD method. Time moves down the vertical time lines shown. Each
attempted transition at the high temperature is extrapolated to the low temperature along a line with a
slope given by the negative of the activation energy (see Equation (4)). The MD simulation can be stopped,
and the shortest-time event at low temperature can be accepted, when the high-temperature time reaches
the intersection with the stop line (dashed), which connects the confidence-modified minimum prefactor on
the y axis with the shortest-time event found so far on the low-temperature time line.

If we set this probability to 1 − δ, and consider a rate with the simple temperature
dependence given by Equation (3), we obtain an expression for the time required to be
(1 − δ)-confident of seeing the event,

tConf = [ν0 j/ln(1/δ)]exp(−Ej/kBT ). (6)

On our Arrhenius-like plot, tConf corresponds to a line with slope −Ej/kB and intercepts
ν0 j/ln(1/δ). As we move down the vertical time line at a given temperature, when we
intersect this line, we have a confidence 1 − δ that a reactive event along this pathway
will have occurred at least once.

We can now define the stop time, tStop (block 7 in Figure 1). Once we have run the high-
temperature trajectory long enough to see at least one event, we construct a “stop line,”
which connects the time of the current shortest-time event on the low-temperature
time line with a point on the y-axis corresponding to the confidence-modified minimum
pre-exponential factor,

ν∗
Min = νMin/ln(1/δ), (7)

noting that each time a new event is detected, the stop-line definition may change. The
stop time is then the intersection of the high-temperature time line with this stop line.
When tHigh reaches tStop (block 8 in Figure 1), the probability that any future event at
THigh would create a shorter-time event at TLow is lower than δ, so we can say with
confidence 1 − δ that it is safe to accept the event at tLow-Shortest and move the system to
the new state.

This can be understood by considering the scenario in which we proceed with the MD
trajectory infinitesimally beyond tStop and encounter an event X along a new pathway
with barrier height EX. If EX is greater than EStop (where EStop/kB is the the negative of
the slope of the stop line), then the extrapolated time for this new event will be greater
than tLow-Shortest and there is no problem—event X would not replace the accepted
event. However, if EX is less than EStop, then the extrapolated time would be shorter
than tLow-Shortest. However, by construction, the stop line that we have just crossed is
the (1 − δ)-confidence line for the reaction pathway corresponding to the worst-case
possibility: EX = EStop and a νX = νMin. A reaction pathway with precisely this barrier
and prefactor probably does not exist in the system, but we can say with 1−δ confidence
that if it did, we would have already seen an event for this pathway. If a slightly different
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pathway exists, such as with a higher prefactor, or a lower barrier, then the probability
is even greater than 1 − δ that we would have already observed this pathway. Thus,
overall, we can say that the probability is smaller than δ that we are accepting the
wrong event by terminating the trajectory at tStop.

Assuming that δ and νMin are chosen wisely, the main source of inaccuracy in the TAD
method arises from anharmonicity, the discrepancy between the actual transition rate
for a given pathway and the HTST predicted value for that rate from Equation (3), with
its simple temperature dependence. This discrepancy (positive or negative), which is
negligible at low T and typically increases in magnitude with T , causes an error in the
predicted times at TLow when Equation (4) is used to convert to the low temperature
time for the event.

The TAD method has been implemented in multiple codes, some of which are widely
used in the computational physics community [Plimpton 1995].

6. TADSIM: MODELING TAD AS A DISCRETE EVENT SIMULATION

TADSim—our parameterized application simulator—models the functionality of the
TAD method as described in the previous section through DES of the individual stages
of TAD, a flow chart of which is shown in Figure 1. Each stage becomes a discrete
event in TADSim, which upon being processed will create future events. The design
of TADSim relies on abstracting out the computationally intense parts and replacing
them by the passage of time while keeping a realistic execution flow in place. The force
call is the most computationally intensive part of TAD and any other MD method. In
fact, compute cycle consumption is dominated by force calls in each stage of TAD, and
thus the cost of the different stages of TAD is simply proportional to the number of
force calls that they consume. This is the key idea behind TADSim.

In the following, we present TADSim details by explaining the parameters available,
the execution flow of the TAD simulation, the performance prediction metrics, and the
underlying simulation engine.

6.1. Design Space Parameters

Parameters that we can vary allow us to explore the hardware and software design
spaces. We divide the input parameters into four categories: (1) Physical System Param-
eters, (2) Method Parameters, (3) Architecture Parameters, and (4) Simulation Engine
Parameters. Table I lists all available parameters. A description of each category and
its associated parameters follow.

Physical System Parameters describe the material system that is the target of the
TAD simulation. NAtoms is the number of atoms simulated. TLow is the low temperature
at which the physical system is being simulated. FcClockCyclesPerAtom is the number
of clock cycles per atom for each force call. The total number of clock cycles used in
a single force call is then FcClockCyclesPerAtom × NAtoms. The actual value of this
parameter depends on the complexity of the potential.

A rate catalog of pathway information is precomputed using TAD machinery. This
rate catalog gives the characteristics of the various possible transitions that allow the
system to exit from the initial state. BarrierHeight is the energy barrier (the difference
in energy between the saddle point and minimum), and Prefactor is the temperature-
independent pre-exponential factor. NEBCalls is the number of force calls required to
find the saddle point using the NEB method. AnharmonicityCorrection is a parameter
used to determine the anharmonicity in the pathway rate when THigh is higher than
the AnharmonicityMinTemp. The anharmonicity correction factor, which multiplies the
rate, is given by (1 + (T − AnharmonicityMinTemp) × (AnharmonicityCorrection − 1)/
AnharmonicityMinTemp), where AnharmonicityCorrection is path dependent. The
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Table I. TADSim Simulation Parameters

Name Description
Physical System Parameters
NAtoms Number of atoms in system
TLow Low temperature (K)
FcClockCyclesPerAtom Number of clock cycles per atom for force call computation
BarrierHeight Barrier height for each pathway in rate catalog (eV)
Prefactor Prefactor for each pathway in rate catalog
NEBCalls Number of NEB force calls for each pathway in rate catalog
AnharmonicityCorrection Correction applied to pathway rate for anharmonicity
AnharmonicityMinTemp Minimum temperature (K) for anharmonicity adjustment
FcYesTransition Number of force calls when a transition is detected
FcNoTransition Number of force calls when a transition is NOT detected
FcTransitionWidthFraction Fractional width of normal distribution for transition force calls
Method Parameters
MDTTimestep MD Timestep (s)
MinPrefactor Minimum state/pathway prefactor, νMin

Delta Uncertainty value, δ

THigh High temperature (K)
FcBlock Number of force calls per MD block
FcThermalize Number of force calls per thermalize
FcThermalizeCheck Frequency of transition checks during thermalize (force calls)
FcCoreCount Number of cores used for MD computation
TransCheckSpawnCoreCount Number of cores to use when spawning a transition check
NEBBeadSpawnCoreCount Number of cores to use per bead when spawning a NEB
NEBBeadCount Number of beads for NEB saddle point calculation
Architecture Parameters
TotalCoreCount Total cores available
CoreClockSpeed Clock speed of cores (GHz)
CommDelay Communications delay during NEB (μs)
SpawnDelay Delay before and after spawning (μs)
Simulation Engine Parameters
TAD_COUNT Number of TAD trials to run
SEED Random seed
TIME_FACTOR Smallest time unit in DES system (fraction of μs)
END_TIME End of simulation (based on TIME_FACTOR)

number of force calls required to complete a transition check is represented by a nor-
mal distribution, with mean FcYesTransition and FcNoTransition for the positive-
and negative-resulting transition checks, respectively, and relative width FcTransi-
tionWidthFraction. FcYesTransition is much larger because a complete minimization
is required when a new state is discovered, whereas a negative result can be determined
quickly. FcNoTransition also has a temperature-dependent factor, given by the same ex-
pression as shown earlier for the rate anharmonicity, with AnharmonicityCorrection =
6.0. These values and characteristics are based on the observed TAD behavior.

Method Parameters are software or algorithmic parameters that define the method
variation (in our case, a variation of TAD) that we are evaluating and hence describe
the software side of the co-design loop. This category contains the most parameters that
we will vary in parameter scans in later sections. MDTimeStep, MinPrefactor, Delta,
and THigh have been defined in Section 5. FcThermalize is the number of force calls
required to thermalize the system when the trajectory is replaced in the state after
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a transition. Transition checks are performed every FcBlock and FcThermalizeCheck
force calls, during the MD and thermalization stages, respectively. The early detection
of a transition during thermalization and/or running MD reduces the amount of wasted
MD time, but frequent checks incur additional cost, unless the transition check is
spawned off, as we discuss later.
FcCoreCount is the number of cores used for running a force computation in par-

allel. It allows us to test an extension to basic TAD, namely parallelizing a force
call. For the modest system sizes that are typically of interest with TAD, the
most common parallelization is a force decomposition strategy. The speedup of this
approach is limited by synchronization and reduction costs, and hence saturates
upon strong scaling. We model the speedup achieved by using FcCoreCount cores as√

a × FcCoreCount2/(a + FcCoreCount2)/
√

a/(a + 1), where a = 100. This function ini-
tially increases rapidly but saturates at a speedup of 10 for large FcCoreCount.
NEBBeadCount is the number of beads used in the NEB method (i.e., the number of

configurations in the chain). The NEB force calls are executed by each bead in parallel.
Additional parallelism is achieved as each bead’s force calls can be executed by a
separate set of cores.
TransCheckSpawnCoreCount and NEBBeadSpawnCoreCount specify how many cores can

be allocated to transition checks and NEB computations (per bead) respectively, when
these computational stages are spawned as separate processes. We describe this in
more detail in Section 8.

Architecture Parameters characterize the hardware platform. Our hardware model
matches the level of abstraction that the software model provides. The architecture
parameters describe an architectural model of a large compute cluster consisting of
a number of cores (TotalCoreCount), each running at the same clock speed (Core-
ClockSpeed). The simulated WCT that a force call takes to execute in TADSim is the
product of CoreClockSpeed, NAtoms, and FcClockCyclesPerAtom. Spawning or creating
a new process incurs a delay (SpawnDelay). If processes on different cores commu-
nicate with each other, a communication delay is incurred (CommDelay). As we focus
mainly on method parameters for TADSim, our hardware model is not very detailed by
design.

Simulation Engine Parameters control the internals of the underlying simulation
engine. These are largely self-explanatory, and we note that the TIME_FACTOR is typically
set to 1μs.

6.2. Execution Flow

TADSim keeps track of multiple time scales simultaneously: simulated WCT for the
TAD runtime; MD time at high temperature, collected only when running MD; and MD
time at low temperature, as updated after each NEB is calculated. Following the stages
of TADSim in Figure 1, thermalization attempts are repeated until no transition is
observed during FcThermalize. Then MD is run one block at a time (FcBlock MD steps)
until a transition check indicates that a transition has occurred. The high-temperature
MD time is backed up by a random fraction of a block to correct for the overestimation
of the real transition time. The transition pathway is determined randomly using the
precalculated pathway rates and the algorithm described later. If this pathway was
not observed previously, the NEB calculation for the saddle point is performed, at
a cost that depends on the nature of the transition. Then, a new putative MD stop
time is calculated based on the new TAD low-temperature MD time according to the
TAD equations of Section 5. This becomes the official stop time if it is smaller than
the previous value. These stages are executed iteratively until the MD stop time is
reached.
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Table II. TADSim Performance Prediction Metrics

Name Description
Algorithm Metrics
Number of MD force calls Total force calls used when running MD
Number of Transition Check force calls Total force calls used for transition checks
Number of Thermalize force calls Total force calls used for running thermalize
Number of NEB force calls Total force calls used for NEBs
Number of force calls Total force calls
Number of new pathways Total unique pathways seen
Number of repeat pathways Total pathway replicates seen
TAD Shortest time Final low-temperature MD time (s)
MD time Total MD time (s)
MD WCT Total WCT for MD (s) when running on 1 core
Raw Boost TAD shortest time / MD stop time
Computational Boost MD WCT / WCT
Computational Boost Error Standard error for Computational Boost
Architecture Metrics
Maximum Cores Used Most cores used in parallel during simulation
Number of Spawned Transition Checks Total transition checks spawned
Number of Spawned NEBs Total NEBs spawned
Communication Cost Total messages (used when spawning)
WCT Total runtime (s)

The stochastic nature of TADSim lies in the transition checks. Transition checks
during thermalization and running MD involve determining whether a transition has
occurred since the last check, and if so, which of the possible transitions occurred and
how long the transition check lasted. The probability P that any transition would occur
during the MD block is given by

P = 1 − exp(−kTotal × MDBlockTime), (8)

where MDBlockTime = FcBlock×MDTTimestep. If P exceeds a random number drawn on
[0,1], then a transition has occurred. Since the probability for each particular transition
is proportional to its rate, the index of the transition that occurred can then be obtained
by drawing another random number on [0,1] and identifying the interval of the partial
cumulative sum of relative rates where it is located. Finally, the duration of a transition
check is drawn from a normal distribution with specified mean (different for positive
vs. negative outcomes) and width, as discussed earlier.

6.3. Performance Prediction Metrics

TADSim has been instrumented to collect the algorithm and architecture prediction
metrics from each TAD trial as shown in Table II. Individual TAD metrics are reported
as well as average metrics across all TADs at run completion.

The algorithm metrics provide a means of comparison with the actual TAD simu-
lation runs. The Raw Boost provides the speedup of the TAD method based on MD
time alone (i.e., the amount of high-temperature MD time that was required divided by
the low-temperature TAD time that was achieved). This does not include the overhead
from thermalization and NEBs, and lost time (one half of a block on average) when a
transition is detected. This overhead is included in the Computational Boost, defined
as the ratio of the WCT that it would take to run the same amount of low-temperature
MD time on one core to the predicted TAD WCT. Force call counts are also provided
per algorithm stage.
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The architecture metrics provide information relevant to the computer architecture
being studied, such as the maximum number of cores used in parallel, spawning costs in
terms of counts and communication cost, and WCT. The WCT is the predicted runtime
of the TAD simulation given the input configuration.

6.4. Simulation Framework

We have used the C++ SimX (formerly known as SimCore) PDES framework [Kroc
et al. 2007; Mniszewski 2010] for the implementation of TADSim. SimX is a library for
building large-scale distributed-memory, discrete event simulations using the discrete
event engine from the Parallel Real-Time Immersive Modeling Environment (PRIME)
[Modeling & Networking Systems Research Group, Florida International University
2012] for passing events, event queue maintenance, and synchronization. The impor-
tant concepts and classes within SimX are Entity, Service, Info, and Profile. Entity is
a class that represents a simulation object, such as a Controller or TAD. Service is a
class that is used to implement the behavior of an Entity and operates like an event
handler. Services are attached to Entities. Info is a class that represents an event that
can be scheduled and supplies additional data items and is processed by a Service.
Info is passed between Entities (more typically between Services) to trigger an action.
Profile is a way of providing runtime specification of default parameter settings for
different types of Entities, Services, and Info.

There are two kinds of simulation objects or Entities in TADSim: a TAD Entity and
a Controller Entity. A TAD Entity performs the TAD algorithm as shown in Figure 1.
Multiple TAD Entities can run in parallel, each representing a separate trial, and no
communication is required between them. The simulation can run in a distributed
fashion with a Controller Entity on each CPU. The Controller Entity’s job is to start
the TAD Entities, coordinate transitions, collect prediction metric data from the TAD
Entities and report average prediction metrics when done. When running distributed,
the Controller Entities operate as a hierarchy for passing on metric results.

7. VALIDATION

As a test of our approach, we compare the results of TADSim simulations with real
TAD simulations on an actual atomistic system. For simplicity, we choose to investigate
a silver adatom (an extra isolated atom) on a silver (100) surface (Figure 3). The
system contains 301 atoms, of which 151 are free to move (the bottom layers are held
fixed at their equilibrium position). The interatomic potential is of the embedded atom
method (EAM) form [Daw and Baskes 1984; Voter 1994], using a parameterization for
silver [Voter 1988]. By simulating the system using MD at a high temperature (T =
1,200K) for 25ns, we identified 1,379 possible transitions. The barrier height and pre-
exponential factor were determined for each pathway, as needed to compute the HTST
rate at any temperature using Equation (3). The NEB calculation for each pathway
was deployed in the same way that it would be in an actual TAD simulation, to obtain
values for NEBCalls. In this system, the dominant transition pathway (i.e., the one
with the lowest barrier of 0.492 electron volts (eV)) is a hopping mechanism that takes
the adatom to a nearest-neighbor binding site. There are four of these, as there are
four equivalent directions on the Ag(100) surface. At slightly higher energy (0.586 eV),
there is an exchange pathway in which the adatom plunges into the surface and pushes
a substrate atom up into the next-nearest-neighbor position. All remaining pathways
discovered in the MD involve two or more atoms and have barriers in the range of
0.98 eV to 1.65 eV. Anharmonicity corrections were determined, for just the hop and
exchange events, by comparing the observed high temperature rates to the HTST rates,
giving AnharmonicityCorrection= 1.5 for the hop and AnharmonicityCorrection= 4.0
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Fig. 3. Atomistic system used for the valida-
tion of TADSim, corresponding to an adatom
on a silver (100) surface. The moving atoms are
blue, the nonmoving atoms are black, and the
adatom is shown in red. The adatom can hop
to an adjacent binding site or perform a two-
atom exchange to a next-nearest- neighbor site.
A large number of higher-barrier processes are
also available to this system.

Fig. 4. Comparison of number of MD force calls and
Computational Boost for TAD versus TADSim.

for the exchange (i.e., the MD hop rate is 1.5 times faster than the HTST hop rate at
T = 1,000K, and the exchange rate is four times faster). The resulting catalog of rates
was then used by TADSim.

TAD and TADSim were run using the parameter values in the second column of
Table III. TAD currently runs on only one core; likewise, the total available cores in
TADSim were limited to one. From 60 to 64 trials were run for high temperatures
ranging from 500K to 1,200K. The average number of force calls per algorithm stage
and the Computational Boost were compared. TAD was run in serial on 2.67GHz Intel R©

Xeon R© CPU X5650 processors.
The results, shown in Figure 4, demonstrate an excellent agreement between

TAD and TADSim results. For example, the number of forces calls taken during MD
stages are in excellent agreement over the whole range of high temperatures and prop-
erly account for the nearly 100-fold change in this temperature range. We observe a
similar agreement in terms of the overall Computational Boost, which is the main
metric of interest in this study. Again, TADSim properly reproduced the temperature
variation of the boost, including the location of the maximum, and the absolute values
are in excellent agreement. We note that the agreement is not as good without the rate
anharmonicity corrections.

Incidentally, these results illustrate the challenge in predicting the performance
of TAD: whereas the number of force calls decreases monotonously with increasing
high temperature (a consequence of the fact that the expected stop time decreases as
THigh increases), the increasingly large overhead from the thermalization, transition
checks, and NEBs counteract this gain, leading to an optimal performance at finite
temperature. Minimizing the impact of this type of overhead on the runtime of TAD is
the key to improving the performance.
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These results clearly demonstrate that TADSim reliably predicts performance trends
and can be used as a good performance predictor in a systematic co-design approach.
This also validates the abstraction of the TAD algorithm that underpins TADSim.

8. EXPLORING NEW ALGORITHM EXTENSIONS

As noted previously, mitigating the impact of overhead is key to performance. In that
respect, transition checks and NEBs are prime candidates for optimization, given their
high cost (up to 500 and 20,000 force calls, respectively, for the validation example).

In usual conditions, most transition checks return with a negative result. It can
therefore be beneficial to spawn off a transition check and start running the next MD
block, speculating that the transition check will indeed return a negative result. This
allows for the concurrent execution of the MD and transition checks. Once a transition
is seen, the current MD block is aborted and TADSim rolls back to the point where
the MD block that resulted in the positive transition check ended (which can be a few
MD blocks in the past, depending on the duration of the check). This is known as a
speculative programming model [Tapus and Hickey 2007]. It does require the use of
extra cores and start/stop overhead time for the spawning but can lead to a reduction
in overall runtime.

Likewise, this same idea can be applied to NEBs. As pathways are seen for the first
time, NEBs can be spawned and the next thermalization started, potentially resulting
in multiple NEBs executing simultaneously. The stop times are updated as the results
of the NEBs become available, and as soon as it can be established that the MD stop
time has already been reached by the ongoing MD, unfinished tasks are aborted and the
simulation ends. Spawning NEBs can lead to a significant improvement in the runtime.

Speculative spawning requires specifying the number of cores used for a spawned
transition check (TransCheckSpawnCoreCount) and a spawned NEB (NEBBeadSpawnCore-
Count). When spawning is attempted, TADSim ensures that a sufficient number of
cores are available to complete the request. When not enough cores are available, tran-
sition checks are performed serially. In the case of NEBs, the availability of cores is
reassessed after a preset delay, until spawning is possible. A delay before and after
spawning (SpawnDelay) represents the start-up and teardown of lightweight versus
heavyweight threads.

9. RESULTS

TADSim can be used to predict TAD performance given a set of parameter choices
as part of an optimization process or a parameter scan. In the following, the primary
performance metric is the Computational Boost, which is the speedup over standard
MD on a single core, including overhead. In our co-design context, a set of parameter
values defines a variation of TAD on the software side, as well as an architecture on
the hardware side. Although a standard parameter optimization procedure, such as a
genetic algorithm, could be used for such a task, such a single-path optimization run
would not characterize the response surface of the performance function over these
hardware and software design spaces very well. In particular, it would not allow us to
explicitly study trade-offs between different parameters. However, if the goal is simply
to identify optimal parameters without rationalizing the nature of the optimum, an
optimization approach is preferable.

We execute parameter scans in a fully factorial fashion over a suitably discretized
design space, leveraging access to supercomputing resources. The resulting high-
dimensional description of the response surface, which is the dependence of perfor-
mance on software and hardware parameters, enables us to discover the traces of
performance phenomena. However, any factorial design inevitably results in a very
significant CPU time consumption. This is addressed by initially running a coarse scan
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Fig. 5. Maximum Computational Boost as a function
of THigh.

Fig. 6. Maximum Computational Boost as a function
of FcBlock (legends are the same as in Figure 5.)

for a discrete set of parameters, followed by a tightly meshed, fully factorial scan around
the peak performance point. We further define focused scans on just a few parameters
to precisely assess the nature of the performance phenomena.

The evaluation was performed on an HPC network using multiple nodes for simula-
tion. The cluster is composed of nodes with four quad-core AMD Opteron 8354 proces-
sors operating at 2.2GHz interconnected using the Infiniband 4X Dual Data Rate DDR
network. Single-core DES runs were distributed across multiple nodes using GNU
Parallel (http://www.gnu.org/software/parallel/).

9.1. Parameter Scans to Explore the Performance Response Surface

Here we present results from fully factorial parameter scans of TADSim hardware and
software parameters with the values as given in the third column of Table III. Only
values that differ from the validation run are shown. The selection of parameters to be
varied was chosen by our domain experts. Preliminary runs identified parameters that
had little effect on performance, such as CommDelay. This indicates that our variations
of TAD are not communication bound. The use of ∞ for TotalCoreCount allowed us to
explore extreme or unlimited situations. The small values for the number of force calls
between transition checks during thermalization (FcThermalizeCheck) and running
MD (FcBlock) represent similarly extreme situations, as they would be very inefficient
in serial. Overall, our parameter values generated millions of scenarios. We performed
64 independent runs for each scenario using different random seeds to obtain averaged
performance metrics. Partial results of the scan are presented in Figures 5 and 6.
In these figures, we vary one parameter, THigh or FcBlock, and plot the corresponding
maximum Computational Boost over the rest of the parameter space. Low temperature
(TLow) is set to 300K. Results are shown for different TotalCoreCount limits.

Because the results in Figures 5 and 6 represent scenarios giving the maximum
Computational Boost taken from data with statistical error bars, we require an addi-
tional procedural step to eliminate bias in the results. For a given parameter constraint
(e.g., THigh and TotalCoreCount in Figure 5), the optimum scenario chosen from all pos-
sible combinations of the remaining parameters will have the largest Computational
Boost, not solely due to having the best parameter settings but instead due to a com-
bination of good parameter settings and a favorable (positive) statistical fluctuation.
Consequently, this value will be biased in the positive direction. To eliminate this bias,
after selecting the maximum-boost scenario, we recompute the Computational Boost
for that scenario with a freshly chosen random number seed and plot this value. Each
result shown thus represents a lower bound on the true value, with statistical error
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Fig. 7. Maximum Computational Boost versus THigh
in the detailed scan. Optimum performance is
achieved at 950K.

Fig. 8. Maximum Computational Boost versus block
size in the thermalization stage and the MD stage
for the detailed scan.

bars, where the lower-bound nature arises from two sources: (1) the procedure just
described can lead to selection of a less-than-optimal grid point, and (2) the parameter
grid has finite resolution.

Figure 5 shows the performance of TAD variations of different maximum core counts
(TotalCoreCount) at different high temperatures (THigh). Consistently, peak perfor-
mance is seen at a THigh of 1,000K for each of the TotalCoreCount values. The cor-
responding plot for TLow = 200K (not shown) is qualitatively similar but has a less
pronounced peak. Even with this coarse scan, we can state that 64 cores are sufficient
to reap a majority of the parallel performance possible. Values of TotalCoreCount be-
yond 64 provide an additional improvement of approximately 40%. We note that the
lower boost at 64 cores is limited by a lower number of CPUs available to do MD
(FcCoreCount = 16, giving 8.5 times speedup compared to a single core, out of a max-
imum possible speedup of 10 times) and fewer CPUs for spawning transition checks
(TransCheckSpawnCoreCount = 16).

Figure 6 shows the dependence of the performance on FcBlock, the time interval
between transition checks. We note again the benefit of allowing additional cores,
especially for very frequent transition checks. Interestingly, we see that performance
is similar for all values of FcBlock for larger core counts, as all transition checks and
NEBs are spawned. Lower core counts result in a mix of spawned and not-spawned
transition checks, producing lower performance when FcBlock is small.

The fully factorial scan provides (1) a strong indication of the location of the opti-
mal performance area and (2) uncovers performance behavior phenomena that merit
further study. In the following sections, we present the results of a fully factorial tightly
meshed scan around the optimum parameter values suggested by the coarse scan and
describe a series of low parameter dimension studies to illuminate the performance
behavior found in the coarse scan.

9.2. Detailed Scan around the Optimum Parameter Values

For the detailed scan, we vary the parameters around the optimal values found in
the coarse scan as described in the fourth column of Table III. We applied the same
unbiasing procedure as earlier, so again these points represent lower bounds on the
exact results, with statistical error bars, although now the bounding and the error bars
are much tighter (e.g., see Figure 7, which shows both the maximum points (red) as
well as the points resampled with fresh random number seeds (green)). Figure 7 shows
the performance results with respect to THigh when TLow = 300K. We find that for our
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Fig. 9. Computational Boost as a function of THigh for different TLow. The dotted line passes through the
optimum THigh for each TLow curve.

silver physical system, the optimum high temperature is 950K. Figure 8 shows the
variation of the boost upon varying the time between transition checks during ther-
malization (FcThermalize) or MD (FcBlock). In this optimization with unlimited cores,
any dependence on FcBlock virtually disappears over the range considered (FcBlock
≤ 100). This offers the user the opportunity to make more frequent transition checks
to improve the physical time-scale resolution, which can be important to the accuracy
of the final physical predictions in some cases. However, as discussed previously (also
see later discussion), greater total core counts are required for the small values of
FcBlock.

9.3. Exploring Performance Phenomena: One-dimensional Parameter Scans

The fully factorial coarse scan points to performance phenomena that warrant further
study. We focus on a few scenarios in detail, varying only a few parameters, and we
organize our findings along observations.

OBSERVATION 1. The optimal high temperature THigh decreases with increasing TLow.

Our observation of how TLow and THigh relate is at first glance surprising and appears
counterintuitive. More in-depth theoretical analysis has confirmed that finding to be
accurate. We show in Figure 9 how the optimum high temperature THigh increases
with decreasing TLow. The logarithmic y-axis scale is noteworthy, as it illustrates how
much more Computational Boost we gain for lower temperatures: more than three
orders of magnitude between the low temperatures of 300K and 200K. This is expected
given that the exponential decrease of transition rates with decreasing temperature
tremendously increases the potential for acceleration. The results also show that the
optimum THigh moves from 850K at a TLow of 200K to 750K at a TLow of 500K. This can
be explained by the following: for a given system, a given setting for THigh and TLow

leads to a particular value for the average slope of the “stop line” (dashed line in Figure
2), the line connecting the shortest-time event at TLow with νMin∗ on the y-axis. For
typical values of νMin and δ, if Tlow is increased, the average slope of this stop line will
decrease in magnitude (become less negative), because the time of the shortest-time
event decreases. This weaker slope means that if we consider lowering THigh, which has
the benefit of reducing the average number of NEBs required before the stop time is
reached, we can do so with less of a penalty in terms of lost boost. Thus, if THigh was
chosen optimally for the first value of TLow, this implies that for a higher TLow, the new
optimum THigh is lower. Another consequence of this is that if TLow is raised far enough,
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Fig. 10. Computational Boost for no spawning
(black), spawning of transition checks (green),
spawning of NEBs (blue), and spawning both (red)
at TLow = 200K. Here, 64 cores are used for the MD;
64 cores are also used for each spawned transition
check and each NEB bead. (Legend is the same as
in Figure 11.)

Fig. 11. Computational Boost for no spawning,
spawning of transition checks, spawning of NEBs,
and spawning both at TLow = 200K. Here, 64 cores
are used for the MD, whereas only one core is used
for each spawned transition check and each NEB
bead.

the slope of the stop line can actually become positive, at which point the optimum
setting for THigh is THigh = TLow, indicating that direct MD will be faster than TAD.

We note that the optimum high temperature in Figure 9 is different (lower) than
in our factorial scans because the scenarios used in Figure 9 correspond to Total-
CoreLimit = 1, FcCoreCount = 1, FcBlock = 500, FcThermalizeCheck = 500, and no
spawning allowed. In essence, our one-dimensional scan along the TLow variable was
done on a single-core architecture. The absence of spawning accounts for a factor of
a few in loss of boost, whereas the serial nature of the force call costs an additional
factor of about 10. The fact that the optimum temperature depends on other parame-
ters points to the high-dimensional and complex nature of our response surface. TAD
can run at higher optimal THigh values for more complex architectures because the
parallelization of force calls and spawning of NEBs and transition checks can partially
amortize the cost of processing the larger number of transitions that will occur before
the stop time is reached.

OBSERVATION 2. Spawning transition checks and NEBs is advantageous if enough
cores are provided.

Spawning of transition checks and NEBs are two key algorithmic variations for en-
hancing the basic TAD method. A comparison of TADSim with and without spawning
is shown in Figures 10 and 11. The parameters used for these scenarios are as fol-
lows: TLow = 200K, FcBlock = 100, FcThermalizeCheck = 100, FcCoreCount = 64, and
TotalCoreCount = ∞. Figure 10 shows the case where TransCheckSpawnCoreCount =
NEBBeadSpawnCoreCount = FcCoreCount = 64. We see that spawning transition checks
alone (green curve) increases the boost by about 25%. Spawning NEBs alone (blue
curve) gives a larger effect (∼60%), and the optimum THigh increases from 850K to
1,000K, because the spawned NEBs hide most of the work caused by the larger number
of attempted transitions at higher THigh. Once NEBs are spawned, spawning transition
checks also (red curve) gives a larger effect than spawning transition checks alone. This
is because the force-call savings represent a greater fraction of the time once the NEB
cost has been eliminated. Note also that the optimum THigh then moves back down a
bit, to 950K.
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Fig. 12. Computational Boost as a function of the transition check interval FcBlock for spawned NEBs and
transition checks (+) and if only NEBs are spawned (x).

Figure 11 shows the same study using a minimal core count for the spawned work,
TransCheckSpawnCoreCount = NEBBeadSpawnCoreCount = 1. The boost improvement
from spawning the NEBs is still substantial; even NEBBeadSpawnCoreCount = 1 is ef-
fective since it provides one core for each of the 21 NEB beads, giving a net speedup of
21/9.9, and (more importantly) it offloads the work in parallel. In contrast, while the
spawned single-core transition checks do improve the boost slightly at low values for
THigh, they actually cause a loss of boost for THigh above 850K, because it is quicker to do
all of the transition checks in serial with 64 cores (making each force call about 9.9 times
faster than a single core) than to wait for the slower single-core spawned transition
check to complete once a transition does occur. This same detrimental behavior holds
when both NEBs and transition checks are spawned, and thus it is better to spawn
just the NEBs in this case (blue curve vs. red curve). Note that the characteristics in
Figures 10 and 11 will vary a bit with the choice of FcBlock and FcThermalizeCheck,
which in this case were set to 100.

OBSERVATION 3. Frequent transition checks improve performance in large core-count
situations, while they are detrimental in limited-core situations.

Figure 12 shows the dependence on FcBlock, the inverse frequency of transition checks,
using fixed parameters TLow = 300K, FcCoreCount = 1 or 64, TransCheckSpawnCore-
Count = 64, and NEBBeadSpawnCoreCount = 64. The value of FcThermalizeCheck was
matched to FcBlock. We see that a serial code (red curve) gives its best performance
when transition checks are infrequent—there is a maximum at FcBlock = 512 (larger
than 512 starts to degrade the physical predictions). In a parallel environment, at
the same THigh = 1,100K, using FcCoreCount = 64 and spawning NEBs gives a sub-
stantial speedup (green curves at FcBlock = 512). An additional 20% can be gained
by shortening the time between transition checks (solid green curve), but only if they
are spawned (solid green curve compared to dashed green curve), which requires that
enough cores are available. As mentioned earlier, this performance gain stems from the
fact that transitions can be detected sooner, which decreases the amount of “wasted,”
post-transition MD time. Looking at the THigh = 900K case (blue curves), the effect is
essentially the same, and we note again the importance of choosing an optimal high
temperature. Finally, we note that this 20% boost enhancement due to shortening the
time between transition checks should increase further if the MD time is accumulated
in parallel, such as by using parallel dynamics [Voter 1998], because the half-block
post-transition time will be a greater fraction of the WCT between transition events.
We leave investigation of this effect for future work.
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10. SUMMARY AND FUTURE PLANS

We have introduced the concept of a parameterized application simulator, TADSim,
that models the TAD AMD method as a fast-running proxy using DES. This was
accomplished by abstracting out the computationally intensive force calls and replacing
them by the passage of time while keeping true to the execution flow of the original
TAD application. This DES simulator results in a much lower computational cost
than actual TAD runs for understanding and exploring performance-related behavior.
New algorithmic extensions, such as speculative spawning, can be tested before being
incorporated into the actual code. Parameter scans can be used to understand and
explore the limits of the current TAD implementation.

TADSim was validated against the original TAD code using an example silver mate-
rial system. Parameter scans using this same physical system have produced interest-
ing results that have allowed us to gain insight into the TAD algorithm behavior and
suggest performance enhancements. We have observed a clear optimum THigh, given a
TLow, where performance is best, and we showed that TLow and this optimal THigh come
closer together with higher TLow. We have evaluated the potential impact of the paral-
lelization of TAD on performance. Adding parallelism to all force call computation is an
effective way to achieve a direct speedup, assumed in the present case to give a 10-fold
effect. Spawning of transition checks and NEBs further improves the performance and
shifts the optimal THigh to a higher temperature. Increasing the frequency of transition
checks can improve performance when large core counts are available. Overall, the
TAD algorithm can make use of hundreds of cores. These results add value for future
method development and physics research in MD.

We have seen that one of the important parameters in optimizing the TAD perfor-
mance is the high temperature. A high value increases the potential speedup, whereas
making it too high degrades performance by introducing excessive overhead. Shim and
Amar [2011] have proposed ways to optimize the value for the high temperature on the
fly in TAD simulations. Our work here complements and extends that work, in that
we explore the dependence on a large number of parameters in addition to the high
temperature, and we do so in the context of PDES.

Currently, TADSim supports exploration of the algorithmic choices more strongly
than architectural choices. Processor speed, core counts for MD and spawning, and
spawning start-up and teardown timings allow for limited architectural exploration.
Future plans include coupling a more robust hardware model representing nodes,
memory, and communications. Parameters will be added to support exploration of
power consumption and resilience. Dynamic power usage will be tracked based on
a node’s characteristics and computations being performed. The value of specific re-
silience strategies for detection and recovery on runtime and computation quality will
be explored for given hardware error rates.

A ParRep application simulator has been developed that represents the parallel-
replica dynamics AMD method [Voter 1998], with publication forthcoming. Potential
future directions include using TADSim for on the fly computational steering of TAD
while running, exploring optimal AMD method combinations using plug-and-play com-
ponent assemblies, and applying this DES approach to other application areas.
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