
RESEARCH ARTICLE

Relative Entropy and Optimization-Driven
Coarse-Graining Methods in VOTCA
S. Y. Mashayak1, Mara N. Jochum2, Konstantin Koschke2, N. R. Aluru1, Victor Rühle3,
Christoph Junghans4*

1Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and
Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America,
2Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, 3 Department of
Chemistry, University of Cambridge, Cambridge, United Kingdom, 4 Computer, Computational, and
Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of
America

* junghans@lanl.gov

Abstract
We discuss recent advances of the VOTCA package for systematic coarse-graining. Two

methods have been implemented, namely the downhill simplex optimization and the relative

entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water

and more complex water-methanol mixture systems. The CG potentials obtained from both

methods are then evaluated by comparing the pair distributions from the coarse-grained to

the reference atomistic simulations. In addition to the newly implemented methods, we

have also added a parallel analysis framework to improve the computational efficiency of

the coarse-graining process.

1 Introduction
In recent years, coarse-grained simulations have become an important tool for investigating
systems on larger time- and length-scales [1–6]. Here, we focus on the bottom-up approaches
of coarse-graining (CG), which create a systematic link between two particle based descriptions
of a given system by building a lower resolution model based on a reference higher resolution
model.

In a coarse-grained representation, several atoms are grouped into a single CG unit and the
effective interactions between them are determined. Such coarse-graining leads to a significant
speed-up in the molecular dynamics (MD) simulations due to i) a reduced number of degrees
of freedom and hence, the number of interactions to compute, ii) smoother interaction poten-
tials among CG particles that enable larger time steps, and most importantly, iii) a speedup in
the intrinsic dynamics of the system which leads to faster diffusion and thus, shorter equilibra-
tion times [7].

Although coarse-grained simulations allow one to reach longer time- and length-scales,
they also, by definition, lose some information from the underlying reference system. For
instance, when replacing a water molecule by a single sphere, one loses information about the
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molecule’s orientation. Generally, CG systems are limited in their representability and transfer-
ability, i.e., they cannot simultaneously reproduce all of the properties of interest and they may
not be applicable for thermodynamic states far away from the one at which the system was
parametrized [8, 9].

There exist, however, several coarse-graining techniques of varying complexities and accu-
racies for modeling CG systems and optimizing their interactions. These range from structure-
based methods, such as Boltzmann inversion, iterative Boltzmann inversion (IBI) [10], inverse
monte carlo (IMC) [11], and relative entropy [12], to force-based methods like force matching
(FM) [13, 14]. Structure-based methods target (multi-body) distribution functions and use the
relation between the distribution functions and the potential of mean force (PMF) [10, 14] to
derive effective CG interactions. In contrast, the FMmethod tries to reproduce forces on CG
sites [14]. Detailed descriptions about the various aspects and methods for determining CG
potentials can be found in ref. [1, 3, 14–16].

Given such a wide range of methods of varying complexity and properties that they target,
the question arises as which method is the most suitable for a specific system in a desired appli-
cation. This can be best answered by a comparative analysis of the CG potentials obtained
from different methods. To facilitate the determination of these potentials and to allow for a
direct comparison of the methods, the Versatile Object-Oriented Toolkit for Coarse-graining
Applications (VOTCA) was developed by Rühle et. al [16], which is available under an open
source software license.

In the first release of VOTCA, Boltzmann inversion, IBI, IMC, and FM had been imple-
mented. In ref. [16], the VOTCA package was used to compare IBI, IMC, and FM by coarse-
graining four test systems, namely SPC/E water, methanol, liquid propane, and a single chain
of hexane. For example, it was observed that the IMC update function is more efficient than
that of IBI method. IMC, however, requires significantly more statistics, and hence longer tra-
jectories, and can be sensitive to finite size effects. On the other side, FM can have represent-
ability issues if the set of coarse-grained interactions is incomplete. For such cases, three hybrid
schemes to combine FM for non-bonded and the Boltzmann inversion for bonded interactions
have been discussed in ref. [17] and applied to liquid hexane.

Recently, we added two new methods to the VOTCA package, namely the simplex method
[18] and relative entropy method [12].

The simplex algorithm is a general optimization method, which can be used to optimize
coarse-grained interactions. As such, it is difficult to target properties other than structure, e.g.
thermodynamic quantities. Nevertheless, extensions for pressure correction [10] or the Kirk-
wood-Buff integral (KBI) [19] have been proposed but lack in a sound theoretical basis. How-
ever, structure-based methods, pressure correction, or KBI, are based on the relation between
the CG interactions and target properties. By comparison, the simplex algorithm makes no a
priori assumptions about the relation between the effective interactions and the target proper-
ties but instead requires the definition of an objective function which allows to fit arbitrary
properties using a given functional form for the potentials. We call this approach targeted
coarse-graining. In that sense, structure-based methods could be categorized as a subclass of
targeted coarse-graining methods which target structural quantities and use a specialized opti-
mizers like IMC or IBI.

Relative entropy is a method which quantifies the extent of the configurational phase-space
overlap between two molecular ensembles [20]. It can be used as a measure of the discrepancies
between various properties of the CG system’s and the target all-atom (AA) ensemble. It has
been shown by Shell S. [12] that one can minimize the relative entropy metric between the
model CG system and the target AA system to optimize CG potential parameters such that the
CG ensemble would mimic the target AA ensemble.
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The main objective of this paper is to describe and demonstrate the two newly implemented
methods in VOTCA. In the sections 2.1 and 2.2, we describe the formulations of the simplex-
based and the relative entropy-based methods, respectively. Implementation details of the sim-
plex and relative entropy methods are given in the sections 3.1 and 3.2, respectively. In the sec-
tions 4.1 and 4.2, we illustrate the simplex and relative entropy methods for a three-site SPC/E
bulk water and a more complex water-methanol bulk mixture. To evaluate the accuracy of the
CG potentials, we then compare the two-body distribution functions obtained from the CG
MD system (CG-MD) with the reference AAMD system (AA-MD) simulations. In addition to
these new methods, we have also made several improvements and other additions to VOTCA
as described in the sections 3.4 and 3.5. For example, we have added a parallel analysis frame-
work, which improves the performance of VOTCA by allowing it to utilize multi-core CPUs.
These performance improvements are discussed in the section 3.4.

2 Methods

2.1 Downhill simplex algorithm
The downhill simplex algorithm [18] is a derivative-free optimization procedure designed to
minimize an objective (or penalty) function, y(x1, x2, . . ., xn), with n degrees of freedom.

In the algorithm, the current state is described by n+1 vertices p1, p2, . . ., pn+1, with their
corresponding penalty values from the objective function, which make up the geometric shape
of a polytope. This polytope can then be transformed successively using basic operations such
as a reflection, an expansion, a contraction, or a reduction in order to move towards the global
minimum, i.e., minimize the objective function. The nature of progression of the algorithm
depends on the combination of these transformations. In the following notation, we assume
that the vertices at each step i are sorted according to their penalty values in ascending order.

The first transformation performed on the initial polytope is a reflection, in which the vertex
with the highest objective value, pn+1, is reflected through the centroid of all remaining points,
�p, such that

pr ¼ �p þ að �p � pnþ1Þ ; a > 0 : ð2:1Þ

Here, pr is the reflected point and α is the reflection coefficient. This transformation preserves
the volume of the simplex. If the penalty of the reflected point, yr, is lower than the best value,
i.e., yr < y1, the algorithm tries to increase the step size along the line of the reflection. This is
known as an expansion,

pe ¼ �p þ g ð �p � pnþ1Þ ; g > 1 ; ð2:2Þ

where pe is the expanded point and γ is the expansion coefficient, which is the distance from pr
through the centroid, �p, to pe. In contrast, if the value of the reflected point is worse than the
highest point, i.e., yr > yn+1, the move is too large. Thus, a contraction is performed to reduce
the step size and find a point which decreases the objective function, where

pc ¼ �p þ rð �p � pnþ1Þ ; 0 > r > 1 : ð2:3Þ

Here, pc is the contracted point and ρ is the contraction coefficient. If no improvement can be
achieved upon contraction, i.e., yc> yn+1, a reduction is performed. This happens in situations
close to a minimum by contracting the whole simplex around the lowest point, p1, such that

pi ! s ð pi þ p1Þ ; ð2:4Þ
where σ is the reduction coefficient. Subsequently, the procedure is restarted with a reflection.
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In all other cases, the highest point, pn+1, is first replaced by the newly reflected, expanded, or
contracted point, all points are resorted according to their penalty values, and the procedure is
then resumed.

The above described algorithm is applicable to a wide range of applications. In the context
of coarse-graining, the evaluation of the objective function involves performing a coarse-
grained simulation with a given set of parameters and subsequently analyzing its trajectory to
compute the properties of interest. Here, the objective function calculates a single value, which
is a cumulative measure of how well the target properties are reproduced. Hence, the algorithm
constitutes a coarse-graining tool to find the optimal coarse-grained interaction parameters for
nearly any measurable simulation property, even the optimal mapping for the CG model itself.

One of the benefits of the downhill simplex algorithm is that it does not require any deriva-
tives of the objective function which are often difficult to obtain. However, problems with con-
vergence may arise when poor initial guesses are provided which yield high penalty values or if
the objective function contains too many parameters, such as n> 10. Furthermore, since the
objective function is a cumulative measure of the properties of interest, providing an appropri-
ate form which accounts for each of these equally is often challenging.

In this work, we set α = 1, γ = 2, and ρ, σ = 0.5. However, as the performance of the simplex
algorithm heavily depends on the type of system and the properties of interest studied, adapt-
ing these transformation coefficients may lead to a better performance than reported here.

2.2 Relative entropy
Relative entropy, Srel, is defined as [12]

Srel ¼
X

i

pAAðriÞ ln
pAAðriÞ

pCGðMðriÞÞ
� �

þ hSmapiAA ; ð2:5Þ

where the sum is over all the configurations of the reference AA system, r = {ri}(i = 1, 2, . . .),M
is the mapping operation to generate a corresponding CG configuration, RI, from a AA config-
uration, ri, i.e., RI =M(ri), pAA and pCG are the configurational probabilities based on the AA
and CG potentials, respectively, and hSmapiAA is the mapping entropy due to the average
degeneracy of AA configurations mapping to the same CG configuration, given by

SmapðRIÞ ¼ ln
X

i

dRI ;MðriÞ ; ð2:6Þ

where δ is the Kronecker delta function. From Eq (2.6), it can be shown that the mapping
entropy, hSmapiAA, does not depend on the CG interactions, but instead it is a unique function
of the mapping operation,M, and the AA configurational weights. The relative entropy is a
metric borrowed from the field of information theory, which quantifies the extent of the config-
urational phase-space overlap between two molecular ensembles [20]. The log-likelihood based
derivation of the relative entropy for molecular systems, as defined in Eq (2.5), is given in ref.
[12]. Physically, Srel can be interpreted as the log probability that one test configuration of the
model CG ensemble is representative of the target AA ensemble, and when the likelihood is a
maximum, Srel is at a minimum. Hence, the numerical minimization of Srel with respect to the
parameters of the CG model can be used to optimize the CG model.

Comparisons between relative entropy and other coarse-graining methods are made in ref.
[14] and [15]. Chaimovich and Shell [15] have shown that for certain CG models relative
entropy minimization produces the same CG potentials as other methods, e.g., it is equivalent
to the IBI when CG interactions are modeled using finely tabulated pair additive potentials,
and to the FM when a CG model is based on N–body interactions, where N is the number of
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degrees of freedom in the CG model. However, there are some advantages of using relative
entropy based coarse-graining. Relative entropy method allows to use analytical function
forms for CG potentials, which are desired in theoretical treatments, such as parametric study
of CG potentials, whereas, methods, like IBI, use tabulated potentials. Recently Lyubartsev et.
al [21] have shows how to use IMC with an analytical function form, too. BI, IBI, and IMC
methods are based on pair correlations and hence, they are only useful to optimize 2-body CG
potentials, whereas, relative entropy uses more generic metric which offers more flexibility in
modeling CG interactions and not only 2-body, but also 3-body and N-body CG potentials can
be optimized. In addition to the CG potential optimization, the relative entropy metric can also
be used to optimize an AA to CG mapping operator.

In a canonical ensemble, substituting canonical configurational probabilities into Eq (2.5),
the relative entropy simplifies to

Srel ¼ bhUCG � UAAiAA � bðACG � AAAÞ þ hSmapiAA ; ð2:7Þ

where β = 1/kB T, kB is the Boltzmann constant, T is the temperature, UCG and UAA are the
total potential energies from the CG and AA potentials, respectively, ACG and AAA are the con-
figurational part of the Helmholtz free energies from the CG and AA potentials, respectively,
and all the averages are computed in the reference AA ensemble.

Consider a model CG system defined by the CG potentials between various CG sites such
that the CG potentials depend on the parameters λ = {λ1, λ2, . . .λn}. As described above, in the
relative entropy based coarse-graining, the CG potential parameters, λ, are optimized by the
relative entropy minimization.

In this work, we use the Newton-Raphson strategy for the relative entropy minimization
described in ref. [15]. In this strategy, the CG potential parameters, λ, are refined iteratively as

λkþ1 ¼ λk � wH�1 � rlSrel ; ð2:8Þ

where k is the iteration index, χ 2 (0. . .1) is the relaxation parameter that can be adjusted to
ensure convergence,rλ Srel is the vector of the first derivatives of Srel with respect to λ, which
can be computed from Eq (2.7) as

rlSrel ¼ b
�
@UCG

@l

�
AA

� b
�
@UCG

@l

�
CG

; ð2:9Þ

andH is the Hessian matrix of Srel given by

Hij ¼ b
�
@2UCG

@li@lj

�
AA

� b
�
@2UCG

@li@lj

�
CG

þb2

�
@UCG

@li

@UCG

@lj

�
CG

�b2

�
@UCG

@li

�
CG

�
@UCG

@lj

�
CG

:

ð2:10Þ

To computerλ Srel andH from Eqs (2.9) and (2.10), we need average CG energy derivatives
in the AA and CG ensembles. For the averages in the AA ensemble, first a single AA system
simulation can be performed and its AA configurations can be saved, then the average CG
energy derivatives can be computed by processing the mapped CG configurations of the saved
AA configurations using the CG potentials at each iteration. For the averages in the CG ensem-
ble, since the CG ensemble changes with the CG parameters, λ, a short CG simulation can be
performed at each iteration to generate corresponding CG configurations. An alternative
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approach, which does not require a CG simulation at every iteration, to obtain the CG ensem-
ble averages is to reweight the initial CG configurations obtained from λ0 [15]. In this work, we
implemented the first approach based on performing a short CG simulation at every iteration.

In the case of a CG model, in which CG interactions are modeled by a two-body pair poten-
tial, uCG, between CG sites, the ensemble averages of the CG energy derivatives can be com-
puted as

�
@aUCG

@la

� �b�
AA

¼
� X

i<j

@auCGðrijÞ
@la

 !b�
AA�

@aUCG

@la

� �b�
CG

¼
� X

i<j

@auCGðrijÞ
@la

 !b�
CG

;

ð2:11Þ

where the sum is performed over all the CG site pairs (i, j), a stands for the 1st, 2nd, . . . deriva-
tives and b stands for the different powers, i.e., b = 1, 2, . . ..

3 Implementation

3.1 Simplex
To be versatile, we have implemented a generic optimization engine embedded in the existing
iterative script framework of VOTCA. This optimizer uses a state file to communicate the
potential energy parameters for the next MD simulation to be performed. Here, potential
energy tables are generated from these parameters which are then used in the simulation. After
the simulation is complete, it can be analyzed to evaluate the objective function and again com-
municate back the next set of parameters to the optimizer via the state file.

The state-based approach described above allows one to easily swap different optimization
algorithms. In this work, we have implemented the downhill simplex algorithm (in Perl) and
an interface to the existing covariance matrix adaptation (CMA) evolution strategy optimizer
[22] (written in Python). CMA is reported to have a better convergence if a large number of
parameters are to be optimized.

3.2 Relative entropy
In the VOTCA package, we implemented the relative entropy-based coarse-graining method
using the iterative workflow framework described in ref. [16]. Required inputs are the pair dis-
tributions of the CG sites in the reference AA ensemble, the initial guess for the CG potential
parameters, the CG ensemble simulation set up files, and the option file describing the model-
ing options for the CG interactions. Furthermore, the user can provide the Newton-Raphson
iteration parameters, such as the relaxation parameter, χ, the convergence check criteria, etc.

To describe the CG potentials, we use the uniform cubic B-spline (CBSPL) form given by

uCBSPLðrÞ ¼ ½ 1 t t2 t3 � 1
6

1 4 1 0

�3 0 3 0

3 �6 3 0

�1 3 �3 1

2
6664

3
7775

ck
ckþ1

ckþ2

ckþ3

2
6664

3
7775; ð3:1Þ

where {c0, c1, c2, . . ., cm} are the spline knot values tabulated form evenly spaced intervals of size
Δr = rcut/(m − 2) along the separation distance ri = i × Δr with the cut-off rcut, and t is given by

t ¼ r � rk
Dr

; ð3:2Þ
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where index k is determined such that rk� r< rk+1. We choose CBSPL form because it exhibits
remarkable flexibility, and it can represent various complex functional characteristics of pair
potentials for sufficiently large number of knots.

To ensure the stability of the relative entropy minimization, some precautionary measures
are taken. For the Newton-Raphson update to converge towards a minimum, the Hessian,H,
must be positive definite at each step. With a good initial guess for the CG parameters and by
adjusting the value of the relaxation parameter, χ, stability of the Newton-Raphson method
can be ensured. One approach to initialize the CG parameters can be to fit them to PMF
obtained by inverting the pair distributions of the CG sites obtained from the reference AA
ensemble. For the CBSPL form, which is linear in it’s parameters, the second derivative of Srel is
never negative, hence the minimization converges to a single global minimum. However, due
to locality property of the CBSPL form, i.e., update to ci affects only the value of the potential
near ri, and the poor sampling of the very small separation distances in the high repulsive core,
the rows ofH corresponding to the first few spline knots in the repulsive core may become
zero causingH to be a singular matrix. To avoid this singularity issue, we specify a minimum
separation distance, rmin, for each CG pair interaction and remove the spline knots correspond-
ing to the r� rmin region from the Newton-Raphson update. Once the remaining knot values
are updated, the knot values in the poorly sampled region, i.e., r� rmin, can be extrapolated.
The value of rmin can be estimated from the minimum distance at which the reference CG pair
distribution is nonzero. Also, to ensure that the CG pair potentials and forces go smoothly to
zero near rcut, couple of knot values before and after rcut are fixed to zero.

For the convergence check, we define two types of errors: (i) the CG parameter error, �λ,
given by

�kl ¼
Xn�1

i¼0

ðlki � lk�1

i Þ2; ð3:3Þ

where n is the total number of CG parameters to be optimized, k is the index of the iteration
step and (ii) the CG potential error, �u, given by

�ku ¼
XM�1

i¼0

XN�1

j¼0

ðuk
i ðrjÞ � uk�1

i ðrjÞÞ2; ð3:4Þ

whereM is the number of CG pair potentials to be optimized, and N is the the number of dis-
crete points used to model CG potentials. Then, the total error, �tot, is defined as

�ktot ¼ wl �
k
l þ wu �

k
u; ð3:5Þ

where wλ and wu are the weights assigned to the CG parameter error and the CG potential
error, respectively. Iterations are terminated when �tot is less than the specified tolerance value
or the specified limit of maximum number of iterations is reached. Finally, due to stochastic
nature of the CG simulations, optimal parameters are computed by evaluating their average
over the last few iterations.

3.3 Computational cost
In the simplex and relative entropy algorithms, CG-MD simulations and analysis of the CG
ensemble configurations at each iteration step are the main computationally expensive stages.
The costs of the CG-MD simulation and analysis of the CG ensemble configurations increase
with the size of the system, i.e., number of particles, and the length of the simulation, i.e., num-
ber of time steps. To ensure the convergence of the coarse-graining iterations, statistically
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reliable CG ensemble configurations are required, which can be obtained by selecting suffi-
ciently large system size and long simulation length. An optimal system size and simulation
length to reduce the cost of coarse-graining can be determined by doing few trial iterations.

In VOTCA, to perform coarse-graining in a computationally efficient manner, we use exter-
nal MD simulation packages, such as GROMACS, LAMMPS, etc. (see Sec. 3.5), which are spe-
cifically developed for efficient MD simulations. For efficiently analyzing CG configurations,
we implement parallel analysis framework in VOTCA, which is explained in the following sub-
section 3.4.

3.4 Parallel Analysis
Analysis routines, such as the calculation of radial distribution functions, can be computation-
ally expensive. In fact, post-processing of MD simulation data may take as much time as the
actual simulation itself. Usually, the cost of an analysis increases with the number of particles
in the system as well as the number of time steps. In the previous serial versions of VOTCA, an
analysis is performed in the sequential order on a frame-by-frame basis. In this work, we imple-
ment a thread-based parallel framework in order to speed up the post-processing of MD simu-
lation data by making use of the multi-core architecture of modern processors.

The thread-based parallelization is implemented using a straight-forward embarrassingly
parallel approach. Post-processing of trajectories is usually performed by applying the same
calculations independently at all time steps. Therefore, straight-forward parallelization can be
achieved by dividing a trajectory into time intervals, i.e., frames, and distributing these among
cores or threads. In contrast, another possibilty would be to divide of a single frame into
chunks, such as domain-decomposition schemes per frame, followed by the distribution of
these chunks to cores. A domain-decomposition per frame based parallelization, although not
applicable to all algorithms, would lead to a performance benefit independent of the number of
frames to process. For the thread-based parallelization of the VOTCA analysis tools, we use the
POSIX thread library. A thread-based implementation offers the advantage of shared-memory
architectures, where memory can be accessed from all working nodes directly. The evaluation
of each frame is now distributed among threads. For this purpose, the distribution or forking
of the trajectory among threads, as well as the merging of the data from different threads has to
be defined. However, the analysis part of the code remains unchanged as in the serial version.
Single frames are then processed individually by each thread. By default, frames are evaluated
according to their original order and output also follows the same order. Mutexes are used to
impose the correct order of the frames and to handle locking of the input and output routines.
A mutex, short for mutual exclusion, is typically used to serialize data access, where the parallel
access of concurrent threads would lead to an undefined behavior. A mutex allows only one
thread to access a block of code, while other threads have to wait until that first thread finishes
this part of the code. The implementation, due to its simplicity, does not require the user to
know much about parallel concepts. Most analysis algorithms can be parallelized with little
code modifications, such as adjusting forking and merging details.

3.5 Additional Improvements
In addition to the new methods, we added support for coarse-graining bonded interactions by
IBI [23], an extension to the IBI process to refine the potential to match the Kirkwood-Buff
integrals [19], and iterative refinement of the thermodynamic force [24], which is needed for
adaptive resolution simulations [25]. In addition to the technical improvements, we added
interfaces to LAMMPS [26], Espresso [27], Espresso++ [28], HOOMD-blue [29] and DLPOLY
[30], to complement the existing GROMACS [31] interface, which was updated to support
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GROMACS 5.0 [32]. This approach is a major advantage over other coarse-graining packages
[33, 34], where an internal, very specialized, MD or MC engine is used for sampling and hence,
often has limited simulation capabilities in comparison with the other very general MD codes
mentioned above. Minor changes in CG mapper have been implemented to ensure compatibil-
ity with the STOCK package [35]. Last but not least, we also added the support for using hybrid
methods, like a combination of FM and Boltzmann inversion [17].

4 Results
To illustrate functionality of the downhill simplex and relative entropy-based coarse-graining
methods implemented in the VOTCA package, we have coarse-grained two systems: an SPC/E
[36] bulk water system and a system consisting of a methanol-water mixture. In previous work,
Mashayak and Aluru [37] have already used the relative entropy method in its VOTCA imple-
mentation to determine CG potentials for water confined inside of graphene slit channels at
different thermodynamic states.

4.1 Coarse-graining of bulk water
In the past, water has already been studied extensively from the point of view of both all-atom
and coarse-grained representations [8, 9, 13, 38–41]. CG potentials for bulk water obtained by
IBI, IMC, and FMmethods using the VOTCA package can be found in ref. [16]. In this work,
we coarse-grain SPC/E bulk water at a thermodynamic state of 300 K temperature and 1 bar
pressure using the simplex and relative entropy methods. In the coarse-grained model, we rep-
resent one water molecule by one CG bead positioned at its center of mass (COM), such that
the CG beads solely interact via an isotropic two-body potential. Note, that representing multi-
ple water molecules within one CG bead is also possible [42, 43]. Previously, Shell [12] and
Chaimovich and Shell [44] have already employed the relative entropy method to optimize CG
potentials for SPC/E water at various thermodynamic states, providing an appropriate refer-
ence for comparison. Also, recently Lu et al. [45] derived a series of coarse-grained potentials
for various water models, TIP3P, SPC/E, TIP4P-Ew, and TIP4P/2005, using the relative
entropy method and systematically compared the ability of these CG potentials to reproduce
various structural, dynamic, and thermodynamic properties of water.

For the reference all-atom ensemble, we use the same bulk water all-atom configurations as
in the NVT ensemble generated in ref. [16]. The all-atom system consisted of 2180 water mole-
cules in a cubic box of size 4.031 nm. The coarse-grained system consisted of 2180 CG beads
which are obtained by mapping the all-atom configuration using a COMmapping scheme.

For the simplex method, we use a modified Lennard-Jones (LJ) potential [46] as the func-
tional form for the CG water interactions:

UCKDðrÞ ¼

4�
s
r12

� s
r6
þ 1

4

� �
: r < rc;LJ

��

 
cos 2

pðr � rc;LJÞ
2wc

� �
: rc;LJ < r < rc;LJ þ wc

0 : rc;LJ þ wc < r

; ð4:1Þ

8>>>>>><
>>>>>>:

with an additional Gaussian,

UCKDgðrÞ ¼ UCKDðrÞ þ he
�ðr � pÞ2

2s2 � he
�ðrc � pÞ2

2s2 : ð4:2Þ

In Eqs (4.1) and (4.2), σ, � and rc,LJ are the usual LJ parameters, wc is the smoothness parameter
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for the attractive part of the CKD potential, and h, p, s, and rc are the gaussian’s amplitude,
mean, width, and cutoff radius, respectively. Hence, there are a total of 6 parameters, i.e., σ, �,
wc, h, p, and s, to optimize. We choose the modified LJ plus Gaussian form because a previous
study [16] implied that the water-water CG interaction requires two potential energy minima.
Initial parameters are obtained by fitting to the potential from ref. [16] and varying them
slightly to obtain 7 sets of initial parameters.

We determine 2 sets of parameters for the CKDg functional form in Eq (4.2). The first set of
the CKDg parameters is determined by using the reference AA ensemble water-water COM
radial distribution as a target property. The second set of the CKDg parameters is determined
by attempting to reproduce the radial distribution as well as the pressure of the AA ensemble.
For the simplex algorithm, the penalty value, y, is defined as

y ¼
X0:6
ri¼0:0

jgCGðriÞ � gAAðriÞj þ ajpCG � pAAj; ð4:3Þ

where gCG(ri) and gAA(ri) are the CG and the target AA ensemble RDF, respectively, ris are the
bin positions used to determine RDFs, pCG and pAA are the CG and the target AA ensemble
pressure values, respectively, and a is the tunable parameter used to switch between only the
RDF-based and RDF+pressure-based coarse-graining. For the latter we used a = 0.01/bar. In
all of the simplex iterations, the 200 ps CG simulations are started from the same initial config-
uration, but energy minimized before the actual sampling, neglecting the first 20 ps. The mini-
mization is necessary due to the fact that in the case of an expansion move, the initial CG
configurations can be far away from any stable structure.

Using the relative entropy method, we optimized the CBSPL functional form, Eq (3.1), for
the water-water coarse-grained interaction. For the CBSPL form, we have used a cutoff distance
of 0.9 nm, fixed the grid spacing to 0.02 nm, and set rmin = 0.24 nm, i.e., only the knot values
corresponding to the region, r> rmin, are optimized, and the knot values in the poorly sampled
region, r� rmin, are extrapolated. Therefore, there are 48 CG parameters for the water-water
CG potential. The initial guess for the CG potential parameters was obtained by a least-square
fitting of the CBSPL functional form to the PMF obtained by inverting the water-water COM
pair distribution function from the reference AA ensemble. At each iteration, a CG simulation
of 200 ps is performed with the GROMACS simulation software. For the first iteration, the ini-
tial configuration for the CG simulation is obtained by mapping the last configuration of the
reference AA ensemble trajectory. For all subsequent iterations, the final CG configuration
from the previous step is used as an initial configuration for the CG simulation. Furthermore,
at each iteration, CG configurations corresponding to the first 50 ps are discarded as equilibra-
tion stage and only the configurations of the last 150 ps stored at 1 ps intervals are used to com-
pute the update for the CG potential parameters.

Fig 1a shows the optimized CG potentials for bulk water. It can be seen that, although the
CG potentials from the relative entropy minimization and simplex are quantitatively different,
they exhibit a similar core-softened double-well-type shape, which is a very characterisitc of
the water-water CG potential [16, 44].

Fig 1b shows the water-water RDFs from the CG simulations along with the reference RDF
from the AA simulation. One observes that the relative entropy-based CG potential is able to
predict the water-water RDF accurately. The accuracy of the RDF from the relative entropy-
based CG potential is consistent with the analysis made in ref. [14] and [15]. In these refer-
ences, it is demonstrated that, when CG potentials are modeled using a finely tabulated func-
tional form such as CBSPL, the relative entropy minimization would result in the CG
potentials similar to IBI and IMC, which reproduce the target AA ensemble pair distributions.
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The simplex-based optimization approach is able to fit the radial distribution reasonably well
considering the fact that there are only 6 parameters in contrast to the 48 parameters for the
CBSPL form. Essentially simplex and CMA lead to the same result, which is not surprising for
such a simple system where a local minimum is relatively easy to find. Fitting the RDF and
pressure simultaneously leads to an interaction similar in shape to that of RDF-only, but
shifted towards lower energies, which is in agreement with earlier findings [9].

4.2 Coarse-graining of water-methanol mixtures
To further test robustness of the simplex and relative entropy methods and their implementa-
tion within the VOTCA package, we consider a much more complex system, namely a water-
methanol mixture. Methanol is the smallest alcohol and its structural properties feature a wind-
ing hydrogen-bonded chains with an average of approximately 2 hydrogen bonds per molecule
[47]. Coarse-grained potentials for pure liquid methanol system have been determined by IBI,
IMC, and FMmethods in ref. [16]. In addition, a water-methanol mixture is a suitable system
for studies of several structural aspects of solvation in aqueous mixtures [48].

Fig 1. Comparisons of CG potentials (a) and RDFs (b) for bulk water. All methods fit the target RDF
sufficiently well and lead to potential of similar shape. The relative entropy method has a slightly smaller error
due the fact that more parameter are available in the potential form.

doi:10.1371/journal.pone.0131754.g001
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In this study, we considered 3 different water-methanol mixtures with methanol mole frac-
tions, Xm, of 0.062 (diluted), 0.5 (equimolar), and 0.938 (concentrated), similar to the ones
used in ref [48]. Reference AA simulations were performed in the NVT ensemble using the
GROMACS simulation software [31]. Water is modeled using the SPC/E model, whereas the
OPLS [49] force field was used to model methanol, and the LJ interaction parameters, namely
C12 and C6, for the cross-interactions between water and methanol are determined using a geo-
metric mean rule. The number of molecules and average densities of the simulated solutions
are given in Table 1. All three mixtures were simulated in a cubic box of length 5.05691 nm
with periodic boundary conditions, at 300 K temperature maintained using the Nosé-Hoover
thermostat [50]. Systems were equilibrated for 5 ns each, followed by production runs of 20 ns.
Reference radial distributions have been computed using snapshots at every 1 ps and a bin size
of 0.01 nm.

In the CG model for the water-methanol mixtures, water and methanol molecules are repre-
sented by CG beads positioned at their COM and the interactions between CG beads are mod-
eled via isotropic two-body potentials. The number of water and methanol molecules in the
CG simulations are the same as in the reference AA simulations (see Table 1).

The simplex setup is very similar to the above mentioned bulk-water setup. We have used
the CKDg potential (Eq (4.1)) to model the coarse-grained interactions, yielding a total of 18
parameters to optimize.

For the relative entropy-based coarse-graining, we have used the CBSPL form, Eq (3.1), to
model all three CG interactions, i.e., water-water, water-methanol, and methanol-methanol
interactions. For the water-water CG potential, a cut-off distance of 1.0 nm was used with the
grid spacing of 0.01 nm and rmin = 0.24 nm. For the water-methanol and methanol-methanol
CG potentials, a cut-off distance of 1.32 nm was used with the grid spacing of 0.02 nm. rmin for
the water-methanol and methanol-methanol CG potentials was set to 0.27 and 0.3 nm, respec-
tively. Therefore, there are total of 241 (103 for water-water, 69 for water-methanol and metha-
nol-methanol) CG parameters to be optimized. At each iteration, a CG simulation of 500 ps is
performed with the GROMACS and the CG configurations corresponding to the first 100 ps
are discarded as equilibration stage and the configurations of the last 400 ps stored at 1 ps inter-
vals are used to compute the update for the CG potential parameters.

The CG potentials obtained from the simplex optimization and the relative entropy minimi-
zation for the three different water-methanol mixtures are shown in Fig 2 along with the corre-
sponding RDFs obtained from the CG simulations. Observations about the accuracies of the
CG potentials from the simplex and relative entropy methods are similar to that of the bulk
water case. Despite the limited flexibility of the CKDg form, the CG potentials from the simplex
optimization are able to predict the RDFs reasonably well. As expected, due to the finely tabu-
lated nature of the CBSPL functional form, the CG potentials from the relative entropy optimi-
zation are able to predict the water-water, water-methanol, and methanol-methanol RDFs as

Table 1. Simulated water-methanol mixtures.

I II III

number of H2O 3752 2000 248

number of MeOH 248 2000 3752

Xm 0.062 0.5 0.938

ρ g/cm3 0.97 0.885 0.80

doi:10.1371/journal.pone.0131754.t001
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Fig 2. Comparisons of the CG potentials and RDFs of methanol-water: Mixture at different methanol mole fractions, X = 0.062,0.5,0.938 are shown.
Arrow indicates the direction of increasing X. All methods fit the target RDF very well for all mole fractions.

doi:10.1371/journal.pone.0131754.g002
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accurately as the reference AA simulations. We note that the CG potentials for the water-meth-
anol mixture system are different for different mole-fractions. This is not surprising, because it
is well-known that the CG potentials depend on the thermodynamic state of the reference sys-
tem [8, 9]. However, it is possible to optimize CG potentials for multiple state-points simulta-
neously [51], but it is beyond the scope of this work.

4.3 Computational cost comparisons
Table 2 shows the comparison of the average computational cost per iteration step for the sim-
plex and relative entropy-based coarse-graining of the water and water-methanol systems.
Please note that, an iteration in VOTCA does not necessary correspond to an iteration in the
classical definition of a simplex step. In VOTCA one iteration means running one coarse-
grained simulation, while in the simplex method one iteration means one transformation of
the polytope which can involve multiple coarse-grained simulations. The computational costs
are obtained on a desktop machine with 8-cores Intel Xeon W3520 2.67GHz CPU. As
described in the subsection 3.3, the CG-MD simulation and CG configuration analysis are the
two major computational parts in the simplex and relative entropy-based coarse-graining.
Therefore, in Table 2, we show the distribution of the total computational cost into the
CG-MD and CG analysis parts. We observe that, for the systems studied in this work, the sim-
plex is faster than the relative entropy, even though a energy minimization is performed in
each simplex step, mainly because the CG analysis step of the relative entropy requires more
time than the simplex. The CG analysis step of the relative entropy is more computationally
expensive than the simplex due to two main reasons: (i) the number of CG parameters in the
relative entropy coarse-graining is more than the simplex and (ii) for the relative entropy
update of the CG parameters, in addition to processing CG configurations to evaluate the Hes-
sian and the derivative matrices, we need to solve the system of linear equations, i.e., Eq (2.8),
which requiresO(n3/3) computational cost when solved using the Cholesky decomposition.
For the methanol-water systems, the CG-MD simulation lengths in the simplex and relative
entropy-based coarse-graining are the same, and hence, the CG-MD cost is similar in both the
methods. However, for the the bulk water case, the relative entropy CG-MD requires more

Table 2. Average computational cost per iteration step (in seconds) for simplex and relative entropy-
based coarse-graining. For the simplex methods the number in the bracket denote the time spend in energy
minimization before the actual molecular dynamics part.

Total CG-MD CG analysis

Water

Simplex 16.3 4.3(+ 0.08) 11.92

RE 435 124.5 310.5

Water-methanol (X = 0.062)

Simplex 2140.2 2109.9(+ 5.29) 25.01

RE 5076 2137.4 2938.6

Water-methanol (X = 0.5)

Simplex 1555.2 1522.3(+ 0.76) 32.14

RE 4176.9 1631.8 2545.1

Water-methanol (X = 0.938)

Simplex 1165.8 1130.2(+ 0.87) 34.73

RE 2796.7 1151.3 1645.4

doi:10.1371/journal.pone.0131754.t002
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time than the simplex, because the length of the CG-MD in the relative entropy is longer
(100000 steps) than the simplex (500 steps). We also note that, for both the simplex and rela-
tive entropy methods, the computational cost of coarse-graining water-methanol systems is
higher than the bulk water because of the higher number of CG parameters, the larger CG-MD
system size (see Table 1), and longer CG-MD simulations at each iteration step.

4.4 Parallel Analysis
We demonstrate the performance of the parallel analysis implementation by calculating the
RDF of a Lennard-Jones [52] fluid. Furthermore, we highlight a crucial part of many analysis
algorithms: constructing neighbor lists, i.e., the search for the neighbors of a particle within a
cut-off distance. Neighbor lists are often required in internal loops, such as the computation of
the distance between two particles within a sphere. Depending on the analysis algorithm and
system size, the construction of neighbor lists may dominate the total computational cost. We
compare two approaches for constructing neighbor lists- (i) a naive approach of the simple
search and (ii) the more efficient implementation based on the grid search. The performance of
the analysis is measured as a function of the system size and neighbor search cut-off.

The simple search algorithm for constructing neighbor lists is as following. For each particle
in a system, loop over all other particles and check the distance between the two particles. If the
distance is less than the provided cut-off, tag this pair as neighbors. Therefore, the simple
search algorithm requires to loop through all particles twice, and hence, its expected computa-
tional cost isO(N2), where N is the number of particles.

In contrast, the grid search algorithm loops over all particles once and distributes the parti-
cles among a grid based on their positions. The size of the cells in the grid depends on the cut-
off. A neighbor lookup will then lead to a constant cost of checking all surrounding cells. The
grid search algorithm is expected to have, besides a large prefactor, a cost ofO(N). The perfor-
mance of the grid search decreases with an increasing cut-off, since each cell in the grid will
hold more particles, whereas the cost of the simple search does not depend on the cut-off.

VOTCA supports both the neighbor list algorithms, and the user is given a choice to select
one of them.

For the performance analysis, we study three different LJ systems with different sizes: the
small system with 5324, the medium with 17687, and the big with 60132 fluid particles. The
system temperature and density are set to T� = 0.73 and ρ� � 0.9 in the reduced LJ units,
respectively.

First, we compare the performance of the simple search and grid search algorithms. For com-
parison, we measure the computational time for constructing neighbor-list for 1 frame on 1 core
only. In Fig 3, the timing results for the neighbor-list creation as a function of the number of par-
ticles are shown. The computational times of the simple and grid search algorithms follow the
expected scaling ofO(N2) andO(N), respectively. The grid search algorithm shows a very good
agreement with our expectation. However, the simple search algorithm performs worse than
expected for the systems with 262636 and 492038 particles. The performance loss of the simple
search algorithm is likely due to the large amount of data the algorithm has to process in the
inner loops. For large data, cache memory limits may exceed causing bad scaling. An additional
benchmark, not reported here, confirmed the dependence of the grid search algorithm on the
neighbor cut-off distance, whereas the simple search is unaffected. However, even after increasing
the cut-off from 1.6 to 2.6σ, it is found that the grid search performs an order of magnitude faster
than the simple search. The cross-over, where the simple search becomes faster than the grid
search depends on the cut-off distance, but is typically too large for productive uses, and hence,
the grid search should be preferred over the simple search in general.
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Next, we study the overall performance of the parallel analysis framework. Ideally, we expect
the speed-up of the parallel analysis, i.e., the ratio of the time required for the serial analysis to
the time for parallel analysis, to match the number of threads used. Due to the use of shared-
memory architecture, communication between threads is not necessary. Hence, the overall per-
formance becomes more efficient with increasing intensity ratio, i.e., computational cost to
input-output (IO) cost. However, the performance may be negatively affected due to the over-
head of threads, such as the additional definition and initialization needed for the single thread
and the handling of mutexes, as well as possible interferences while accessing the shared mem-
ory from multiple threads. Some of the mutex-overhead can be saved by explicitly neglecting
the original ordering of frames. Both negative effects increase with the number of threads and
reduce the overall speed-up.

Fig 4 summarizes the computational times for the calculation of g(r) as a function of the
number of threads. It is observed that increasing the number of threads always decreases the
total computation time, however, the timings deviate from the ideal scaling line with increasing
thread count. Up to 4 threads, the computation time is closer to the ideal scaling, i.e, the paral-
lel speed-up is around 3–4. For 6, 8, and 12 threads, however, the total computation time devi-
ates from the ideal scaling line. The non-ideal time scaling behavior is mainly caused by the
constant overhead of the VOTCA input routine and a missing cache optimization. The raw
numbers of the computation time for all 960 frames on 1 core are 20s, 68s, and 243s for the
small, medium and big system, respectively. For comparison, the GROMACS tool, g_rdf,
which is based on simple search, takes 740s, 8116s and 82728s to compute g(r) for the small,
medium and big system, respectively. In the former versions of VOTCA, the parallelization of
g_rdf was script-based and handled by multi_g_rdf. The trajectory was explicitly split in
time into chunks and multiple instances of g_rdf were called. The results for the small and
medium systems are also shown in Fig 4.

As stated earlier, the overall performance gain is improved if computationally intensive
algorithms are used. In other words, when using threads, a computationally expensive algo-
rithm leads to a better scaling behavior. The constant overhead cost becomes more negligible

Fig 3. Computation times for the construction of neighbor lists: simple vs. grid search. Shown are the
results for the Lennard-Jones fluid as a function of particles in the system. In addition to the data points for the
simple and grid search algorithms, lines indicate the scaling law with 2 and 1 as the exponent, respectively.
These exponents result from the cost of the simple and grid search algorithm:O(N2) andO(N), respectively.
The cut-off for the neighbor search was set to 1.6σ, which roughly corresponds to the first minimum in the
radial distribution function.

doi:10.1371/journal.pone.0131754.g003
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and cache-misses are less likely to happen. For example, the algorithm that spends most of the
CPU time in the inner loops of the evaluation, will perform much better than the lightweight
calculation of a RDF. Our tests showed almost-perfect scaling up to 8 threads and only 20%
loss of the performance at 12 threads for the algorithm which makes a heavy use of intrinsic
CPU commands.

5 Conclusions
In this work, we have extended the versatility of the VOTCA package by implementing two
recent coarse-graining methods, namely, the downhill simplex optimization and the relative
entropy minimization. We have also demonstrated the applicability of the newly implemented
coarse-graining techniques in VOTCA by coarse-graining a bulk water system and water-
methanol mixture. We have found that for both the systems, the CG pair potentials described
by the CBSPL functional form and optimized by minimizing the relative entropy reproduce the
target pair distributions. This result validates the known characteristic of the relative entropy
minimization, i.e., when the CG pair potentials are modeled using finely tabulated functional
form then at relative entropy minimum the CG pair potentials reproduce the pair distributions
of the target ensemble. We have also found that the simplex-based optimization method is
effective in minimizing the error between the properties from the CG and the target AA simu-
lations. For the bulk water and water-methanol mixtures, we have shown that the simplex
method can effectively optimize the CG potentials modeled using the CKDg functional form
with just 6 parameters, such that the target pair distributions and pressure values are predicted
reasonably well by CG simulations. The accuracy of the CG potentials optimized by the sim-
plex method can be improved if a more complex functional form with additional parameters is
used to model the CG potentials. However, for a large number of parameters, the simplex
method becomes too computationally inefficient. Input for these simulation will be made avail-
able as tutorials as part of the upcoming VOTCA 1.3. Finally, in addition to the new coarse-
graining techniques, we have also improved the computational efficiency of the VOTCA

Fig 4. Absolute computation time for the radial distribution function calculation as a function of
threads. The small system holds 5324, the medium 17687 and the big system 60132 particles. The dashed
line shows the ideal scaling line. Also shown are the results from the script-based parallelization of
multi_g_rdf.

doi:10.1371/journal.pone.0131754.g004
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package by implementing the parallel analysis framework and added support for more MD
sampling engines.
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