
Database Assisted Distribution to Improve Fault Tolerance
for Multiphysics Applications

Robert S. Pavel
Los Alamos National

Laboratory
Los Alamos, NM 87545 USA

rspavel@lanl.gov

Allen L. McPherson
Los Alamos National

Laboratory
Los Alamos, NM 87545 USA

mcpherson@lanl.gov

Timothy C. Germann
Los Alamos National

Laboratory
Los Alamos, NM 87545 USA

tcg@lanl.gov
Christoph Junghans

Los Alamos National
Laboratory

Los Alamos, NM 87545 USA
junghans@lanl.gov

ABSTRACT
Multiscale physics applications present an interesting prob-
lem from a computer science standpoint as task granularity
has the potential to vary drastically which places a heavy
burden upon the task scheduler and load balancer. Addi-
tionally, due to the long execution time of some of these
computations, fault tolerance becomes a necessity as not be-
ing able to recover from a fault during a single long running
task results in the recomputation of all data used to gener-
ate the inputs. Traditionally, this is facilitated through the
use of checkpointing. However, these checkpoints must be
taken sparingly due to their high cost.

In this paper, we describe our use of a NoSQL database
and asynchronous task based runtimes to work directly from
the checkpoints themselves with minimal code modifications
by domain scientists. To evaluate the performance impact
of this approach, we have studied the CoHMM proxy appli-
cation: a co-design proxy application designed to test mod-
ern runtimes by simulating the propagation of a shock wave
through a material through the use of the heterogeneous
multiscale method. We distilled this proxy application to a
library that we used to implement CoHMM in a range of
runtimes with and without our database assisted approach
and we measured the overhead of each with respect to the
CoHMM application and the cost of serializing and migrat-
ing data in the runtimes themselves.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming, Distributed
Programming ; D.4.5 [Software]: Operating Systems—Re-

c©2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or repro-
duce this article, or to allow others to do so, for Government purposes only.

Co-HPC2015, November 15-20, 2015, Austin, TX, USA
c©2015 ACM. ISBN 978-1-4503-3992-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2834899.2834908.

liability, Checkpoint/Restart

General Terms
Performance, Reliability

Keywords
Co-Optimization for Multiple Objectives, Multiphysics, Run-
times, Database, Fault Tolerance, Resiliency

1. INTRODUCTION
Computer simulation of complex physical phenomena of-

ten requires the simultaneous execution and coordination
of physics simulations spanning multiple time and length
scales. This is achieved through the use of multiscale mod-
els that combine expensive small-scale simulations, such as
a molecular dynamics simulation, with comparatively cheap
larger scale simulations, such as finite volume methods. The
combination of these lends themselves well to task and data
parallelism and allow for considerably larger systems to be
simulated.

However, as a result, the granularity of these tasks can be
very large and, depending on the task granularity and the
techniques used to improve performance, vary drastically,
creating load imbalance. One way to resolve this is through
the use of modern asynchronous task based runtime systems
which have powerful load balancers that can schedule and
migrate tasks in a way to avoid starvation and maintain
throughput.

Unfortunately, even with the load imbalance issue resolved,
fault tolerance remains. For long running scientific appli-
cations fault tolerance is already an important issue and
this will only increase as we migrate from the petascale to
the exascale era [12]. Traditionally this is handled through
checkpointing [19] but, depending on task length, as well as
the overall speed of the simulation, the frequency at which
checkpoints are desired may be prohibitively high.

To that end, we propose an approach in which we simul-
taneously optimize for both performance and resilience by
combining asynchronous task based runtimes with databases
to provide a solution to these problems. By utilizing an asyn-
chronous task based runtime, we are able to take advantage

of task scheduling and load balancers designed to handle a
wide range of task granularities. However, rather than use
the runtimes for data movement, we instead treat a database
as a global memory. This allows us to largely avoid the se-
rialization costs associated with distributed runtimes while
allowing us to store checkpoints at a much higher frequency.

In this paper, we describe our approach and consider CoHMM;
a proxy application developed by ExMatEx [1], a DOE/ASCR
Co-Design Center focused on scale-bridging material science
and engineering applications, designed to represent multi-
scale physics applications and simultaneously test modern
runtime.

In this paper, we first provide brief background informa-
tion in section 2. In section 3 we go into more detail on
what motivated this avenue of research, and in section 4 we
describe the CoHMM proxy application in greater detail.
Section 5 explains our approach, and section 6 shows our
experimental results and the overhead of this approach. In
section 7 we discuss future improvements to our work and
in section 8 we present our conclusions from this research.

2. BACKGROUND
In this section, we will provide a bit of background in-

formation on our work. First, we will provide a very brief
overview of multiscale physics, the application of interest.
Then we will discuss asynchronous task based runtimes with
an emphasis on the specific runtimes of interest in this paper.
Finally, we will briefly explain the rise of NoSQL databases
and why they are of potential use to scientific computing.

2.1 Multiscale Physics Applications
Computer simulation of complex physical phenomena of-

ten requires the simultaneous execution and coordination
of physics simulations spanning multiple time and length
scales. This is because a fundamental challenge in scientific
computing is reconciling the different scales at which differ-
ent scientific models are applicable. For example, modeling
the deformation of a plane’s wing using a molecular dynam-
ics simulation would be incredibly costly as molecular dy-
namics operates at the atomic level. Multiscale physics re-
solves this issue by utilizing simulations with multiple mod-
els, generally at different scales in time and/or space [16,
26].

The subset of interest for our work are multiscale physics
applications in which a macroscale method dynamically spawns
subscale model computations as needed when the constitu-
tive response becomes too complex for the macroscale model.
This allows phenomena at a very small scale to be simulated
to determine essential properties of the material which can
then be used, in conjunction with a coarser grained model
and statistical properties, to advance the overall simula-
tion [28].

2.2 Asynchronous Task Based Runtime
When tasked with writing such a complex multiscale physics

code, developers typically draw on a set of languages and
software tools such as C, C++, or FORTRAN, and employ
MPI for communication. Effective use of acceleration de-
vices (e.g. multi-cores or GPUs) is achieved using a special-
ized API such as CUDA [21], OpenCL [27], or OpenMP [14],
leading to a combination colloquially termed “MPI+X”.

This traditional approach has served the community well
for many years, especially for single-physics, bulk synchronous

codes. However it is becoming increasingly difficult to de-
velop and maintain modern applications using traditional
tools. Advanced functionality such as dynamic tasking, adap-
tive communication patterns, and fault tolerance must either
be implemented directly by the application developer or spe-
cialized versions of the traditional tools must be employed.

This has led to a rise in programming models and run-
times designed with finer grain dependencies in mind. These
runtimes implement models based on the scheduling of asyn-
chronous tasks. Two such runtimes are Intel’s Concurrent
Collections and Charm++.

2.2.1 Intel Concurrent Collections
Intel Concurrent Collections (CnC) is a unified model for

shared and distributed memory systems with an emphasis
on providing tools for domain experts to express the algo-
rithm with minimal scheduling constraints while allowing a
tuning expert to later optimize the code [11]. CnC provides
constructs to allow the programmer to decompose a C++
application into a set of asynchronous tasks with data de-
pendencies that are then automatically distributed across
the entire system with minimal input from the programmer.
CnC relies upon the programmer for fault tolerance

2.2.2 Charm++
The Charm++ runtime and model was developed at the

University of Illinois Urbana-Champaign and is a model
built around medium-grained processes, called chares, that
interact with one another via messages and callbacks [17].
Charm++ is designed with an emphasis on re-usability through
modules and provides a high level language with which to
express the dependencies between tasks and data. Newer
releases of Charm++ provide checkpoint based fault toler-
ance [29]

2.3 NoSQL Databases
As the size of data centers increased, the limitations of,

traditional, SQL [15] databases became apparent. One so-
lution to this was the concept of the NoSQL [13] database
which sacrifices many of the relational aspects of an SQL
database for the simplicity of a key-value store.

Scalable, in-memory, NoSQL, databases [22] provide ser-
vices that enable many new application capabilities with
fault tolerance being an obvious example. An application,
in collaboration with a scheduling and execution environ-
ment, can detect a component failure and restart the failed
component from a previously cached data checkpoint. This
enables recovery from a single node failure, as opposed to
taking down the entire application - as often happens today.

These databases can also be used to accelerate codes by
caching previously computed results to avoid expensive re-
computation. Applications may also cache data for use by
concurrently executing, in-situ, visualization and analysis
code. Finally, databases can be used as a communication
mechanism in place of messaging: components can store
data into the database that is then easily retrieved by any
other component within the system.

3. IMPROVING FAULT TOLERANCE OF AP-
PLICATIONS

Fault tolerance is a growing concern as we approach the
exascale era [12]. It is a particularly large concern in scien-

tific computing as runs can take hours, if not days, and a
single fault can crash the system and potentially corrupt the
data. Traditionally, checkpointing [19] is employed to allow
programs to recover quickly from faults. However, the pro-
cess of writing the current state to disc is costly and must
be performed sparingly so as to not impact performance too
heavily.

In previous work [23], we noticed the benefits of using a
NoSQL database (Redis [9]) to store the results of previous
costly operations and to act as a look up table to avoid
recomputing values. In our testing, the overhead of the
database was more than compensated for by the time we
saved by minimizing the number of MD simulations. After
continuing to work closely with domain experts, we investi-
gated the benefits of storing all shared data in the database
and relying on the runtime solely for task scheduling and
load balancing. Instead of relying upon the runtime to mi-
grate data we push all results to the database and merely
transmit the minimum information required for the runtime
to collect the results from the cloud.

In doing this, we treat the checkpoints as another level of
memory that we are able to read and write to. This allows us
to partially overlap the cost of saving the checkpoints with
that of serializing the data to be transferred by the runtime
itself. Furthermore, we push the task of ensuring availability
and consistency of data to the databases themselves, where
this is a heavily studied problem [13]. And, as a side ben-
efit, we are able to rapidly implement our applications in a
range of runtimes with minimal concerns for the underlying
memory model or even programming language and use the
runtimes solely for task scheduling.

Depending on performance and the benefit of such models,
we can later make a full implementation that can better take
advantage of the features of the runtime.

4. THE COHMM PROXY APPLICATION
The Co-Design Heterogeneous Multiscale Modeling proxy

application (CoHMM) is a proxy application [18] designed
specifically with the goal of exercising modern runtime sys-
tems through the use of a multiscale physics application [1].
CoHMM implements a heterogeneous multiscale method [28]
to simulate the propagation of a shockwave through a two
dimensional material.

A full description of this is beyond the scope of this paper
and is presented in previous works [24, 23], but a high level
overview from a computer science perspective is as follows:
At the coarsest scale, a “macrosolver” divides the system
into small domains and handles the interactions between
these domains, or “cells”, through finite volume methods
which are implemented as simple stencil operations. How-
ever, to advance this simulation requires the computation of
the fluxes of each cell. This is handled with a much more
costly Molecular Dynamics (MD) simulation, specifically
the Co-Design Molecular Dynamics (CoMD) proxy appli-
cation [1].

To minimize the cost of these MD simulations, we build
upon previous work [23] and apply an interpolation scheme
known as “kriging” [25] that utilizes previously computed
values to potentially skip the expensive MD simulation. Fur-
thermore, we store the results of every MD simulation in a
database to avoid recomputing previously obtained results.

This proxy application was chosen as it is not only in-
dicative of multiscale physics but it also provides a good

variety of tasks. At the macrosolver level, the simple stencil
performs a few floating point operations on a point and its
nearest neighbors and is a very good candidate for tiling.
For the flux computations, either a kriging task or an MD
simulation is performed on each point. The MD simulation
itself involves a single input point that is used to generate a
system that is simulated for one thousand iterations, which
is a time consuming operation. And, in between is the krig-
ing task which involves database accesses, the solution of
a small linear system of equations, and potentially an MD
simulation on top of that if kriging fails. Thus, we have a
comparatively simple small stencil operation followed by a
large number of tasks of varying lengths and complexities,
which provides a good test of the load balancers in the var-
ious runtimes.

5. METHODOLOGY AND IMPLEMENTA-
TION

To this end, we studied CoHMM and converted it into a
library with driver functions that divided each iteration of
the macrosolver into a sequence of “steps”, with each step
spawning flux tasks. These tasks are then passed to the
runtime to distribute the flux computations to the available
processing units. To study the overhead of our approach,
we developed two implementations for each runtime. Each
implementation uses the same underlying library functions
to advance the simulation and differ only in how tasks are
queued and how input and output data are handled.

By requiring domain scientists to write their initial code
with a focus on having steps with clear inputs and outputs
we are easily able to convert the code into a functional li-
brary. The drivers for these libraries can be rapidly imple-
mented for a variety of runtimes and distribution schemes
with no additional modifications by the domain scientist.

This approach, while less efficient and closer to a bulk
synchronous approach, avoids the need to re-implement the
scientific library for each runtime and instead treats the sci-
entific library as a black box the runtime interacts with. This
allows for a wider range of programming models to utilize
the same library as even the programming language becomes
less important so long as the library can be called. Further-
more, by employing asynchronous task based runtimes we
are better able to take advantage of task migration and are
able to rely on the runtime to handle the load balancing of
the different task lengths.

The implementation of this work may be downloaded from
the CoHMM proxy application’s page on Github [2]. The
traditional implementation can be found under the “Bold
and Distributed (bad)” branch, with the database assisted
version found under the “Database Assisted Distribution
(dad)” branch.

5.1 Traditional Runtime Implementation
The first implementation is a more traditional implemen-

tation in which the runtime handles all task and data mi-
gration. As macrosolver steps generate tasks, they are en-
queued, with input data, into the runtime’s queue. The
runtime then proceeds to schedule the execution of the task,
collect the results, and return them for the next macrosolver
step.

Due to the comparatively small size of the problem at
the macrosolver level, the macrosolver itself is a single task

Flux Task

Output Flux

Flux Task

Output Flux

Generate
Tasks

Collect Tasks
and

Advance Macrosolver

Input Field Input Field

Macrosolver
State

Figure 1: Simplified Task Graph of Traditional Im-
plementation

without tiling and the state of the macrosolver is kept in
memory on the root process. For the sizes of the problems
being studied, the costs of data migration and ghost cell
exchanges largely outweigh the increased throughput.

A simplified task graph is shown in Figure 1 with pink
hexagons representing arguments. Each Flux Task uses an
Input Field to generate an Output Flux, and the results are
used to advance the Macrosolver State. In actuality, fluxes
are used to adavance the macrosolver state four times per
time step.

Additionally, while not used to share data between pro-
cesses within an interation, a database is used to support
kriging and to avoid unnecessarily recomputing previously
obtained data. Details of the behavior of this can be found
in previous work [23]. For the purposes of our work it is
simply a technique used to drastically accelerate the overall
simulation.

5.2 Database Assist Distribution
The second implementation is the cloud based solution.

As tasks are generated by macrosolver steps, their associated
data is put to the database. Upon completion of a step, the
number of tasks is passed to the runtime. The runtime then
generates the specified number of skeleton tasks and sched-
ules them across the available processing units. Each task
then reads the required inputs from the database, computes
the flux for the cell, and writes the result to the database.
Once all tasks have signaled completion, the root processor
begins the next macrosolver step.

As before, the macrosolver itself is a single task without
tiling. However, in this implementation the macrosolver also
writes its current state to the database at the end of each
step. Upon starting the next step, it reads its state, as

Flux Task

Output Flux
Key

Output
Fluxes

Flux Task

Output Flux
Key

Generate
Tasks

Collect Tasks
and

Advance Macrosolver

Input Field
Key

Input Field
Key

Input
Fields

Macrosolver
State

Write
Checkpoint

Figure 2: Simplified Task Graph of Database As-
sisted Distribution

well as the result of the flux tasks, to advance the overall
simulation.

The simplified task graph of this version can be seen in
Figure 2. While similar in layout to Figure 1, only the keys
to the database (yellow rectangles) are passed to and from
tasks. Instead, each task uses the provided key, and the over-
all program state, to read and write results to the database.

In addition to being used to share data between processes,
the database is once again used to support kriging and to
avoid unnecessarily recomputing previously obtained data.

The database assisted version also checks if a macrosolver
iteration has already completed and, if so, relies on the ex-
isting data in the database. If a fault occurs mid-iteration,
we rely on CoHMM’s normal database checks to treat the
previously completed flux calls as reads from a look-up table.

All benchmarks in this paper are based upon a centralized
database. While we leave the issue of configuration and
ensuring consistency to the user as it is very much dependent
upon the host system, we provide optional interfaces that are
detailed in our documentation and source code [2].

6. EXPERIMENTS AND RESULTS
While our goal is to simultaneously optimize for both per-

formance and resiliency, our database assisted approach is
inherently going to result in a performance penalty, if only
because tasks will begin without all data available. Depend-
ing on the application, this may or may not be an acceptable
price to pay for the greatly increased resiliency due to fault
tolerance. To make this decision, it is important to under-
stand how much overhead is incurred.

To measure this, we compared the execution times of the
traditional implementation, in which the runtime handles
data migration, as well as our database assisted implemen-
tation. Both used a database for the purpose of kriging, but

only the database assisted implementation used the database
as a global shared memory.

For the purposes of this paper, we focused on two run-
times: Intel’s Concurrent Collections [11] (CnC) and Charm++ [17].
CnC and Charm++ were chosen as both are representative
of modern asynchronous task based runtimes and both have
demonstrated high performance and scalability in the past.
This allows us to focus more on the overhead and scalabil-
ity of our approach as opposed to that of the underlying
runtime.

Similarly, we utilized a single Redis [9] server as our database.
Our approach supports distributed databases but the per-
formance of these depends upon how the database itself is
distributed. As our focus is on our database assisted dis-
tribution and less on the databases themselves, we chose to
utilize a centralized database with proven scalability for the
purpose of these benchmarks and avoided systems where a
more distributed database would be required. For obvious
reasons, this limits the resiliency of our benchmarks and pro-
duction runs should determine the appropriate configuration
for a distributed database.

All benchmarks were run on the Los Alamos National Lab-
oratory’s Conejo supercomputer in which each node consists
of two quad-core Intel Xeon X5550 processors for a total of
8 physical processor cores per node. Both implementations
interact with version 3.0.2 of the Redis database with ver-
sion 0.13.1 of the hiredis library [10] and use Intel’s Math
Kernel Library version 11.2 [5] during the kriging process.
The CnC implementations were compiled with Intel’s C++
Compiler version 15.0.090 [4], Intel MPI version 5.0.1 [6],
and Intel CnC version 1.0.002 [6]. The Charm++ imple-
mentations were compiled with the GNU C++ Compiler
version 4.8.2 [3], Open MPI version 1.6.5 [7], and Charm++
version 6.6.0.1 [8].

In terms of the problem size, we chose to focus on strong
scaling results and fixed the problem as a centralized shock
discontinuity in a 128 × 128 grid and twenty iterations of
the macrosolver. This problem was selected as the number
of required flux operations per phase is sufficiently high to
ensure that we are able to see the impact of the runtimes’
load balancers even at 512 processors.

6.1 CoHMM with CoMD
First we evaluated the overhead with the full proxy ap-

plication, including CoMD calls with a measured execution
time of approximately 8 seconds per call. We compared the
traditional implementation (RT) with the database assisted
distribution (DB) and plotted the results in Figure 3. Due
to the size of the problem and the execution time of the sim-
ulation, we were able to collect data for as few as 2 nodes
(16 processors) with CnC and 4 nodes (32 processors) for
Charm++.

For both the CnC and Charm++ implementations, the
version that utilizes the DB has consistently lower perfor-
mance. This was to be expected as each task must now re-
quest and wait for data during execution and can’t rely on
the runtime to prefetch the inputs. Fortunately, the scalabil-
ity does not differ between the RT and DB implementations.
We show this by plotting the execution time relative to the
run with the smallest number of processors (so 16 for CnC
and 32 for Charm++) in Figure 4.

In both cases, speed-up is near linear. with the CnC im-
plementation even having near perfect speed-up out to 256

16/8 32/8 64/8 128/8 256/8 512/8
Number of Processors / Processors per Node

0

10000

20000

30000

40000

50000

60000

E
xe

cu
tio

n
Ti

m
e

(s
)

CnC - RT
CnC - DB

Charm++ - RT
Charm++ - DB

Figure 3: Performance of CoHMM with CoMD Call

16/8 32/8 64/8 128/8 256/8 512/8
Number of Processors / Processors per Node

1

2

4

8

16

32

S
pe

ed
-U

p
R

el
at

iv
e

to
S

m
al

le
st

N
um

be
ro

fP
ro

ce
ss

or
s

CnC - RT
CnC - DB

Charm++ - RT
Charm++ - DB

Figure 4: Plot of Speed-Up of CoHMM with CoMD
Call

1/8 8/8 16/8 32/8 64/8 128/8 256/8 512/8
Number of Processors / Processors per Node

0

50

100

150

200

250

300
E

xe
cu

tio
n

Ti
m

e
(s

)

CnC - RT
CnC - DB

Charm++ - RT
Charm++ - DB

Figure 5: Performance of CoHMM with Analytic
Solution

processors (32 nodes of Conejo). This is important as it
shows that the overhead of our approach is not sufficient
to impact the scalability of the application and traditional
optimizations will still apply. The Charm++ data in par-
ticular is valuable as it shows that this is true both under
linear scaling, up to 64 processors (8 nodes of Conejo) as
well as when the point of diminishing returns is reached.

6.2 CoHMM with Analytic Solution
Next, we disabled CoMD and instead used an analytic

solution to compute the fluxes. The approximate execu-
tion time of a CoMD call is 8 seconds, whereas the approxi-
mate execution time of the analytic solution was measured as
0.002 seconds. As such, the execution time is primarily the
overhead of the runtime and database accesses themselves
with respect to the communication patterns of CoHMM. The
execution times are plotted in Figure 5.

In both cases, the runtime and database overheads are
fairly constant out to 512 processors, which is consistent
with the scaling shown in Figure 4. These results are partic-
ularly interesting as, for CnC, the runtime version is actually
outperformed by the database version when more than one
node of the cluster is in use. This appears to be due, in
part, to the CnC runtime’s serialization framework. Addi-
tionally, as this only occurs once inter-node communication
begins, it also likely has to do with how CnC handles data
migration between nodes of a system. Under the Intel CnC
runtime, if a task begins execution and determines input
data is not available it will terminate execution and restart
the task from the start at a later time [6]. This is in contrast
to the DB version which simply blocks.

Comparatively, the Charm++ version exhibits almost the
opposite behavior. The single threaded execution has the
database version outperforming the runtime version, likely
due to unnecessary serialization of data between tasks run-
ning in the same shared address space, But expected behav-
ior resumes as of the multithreaded (8 processors on a single
node) configuration.

This data is valuable as it shows that the cost of sharing
data through the runtime may actually be greater than shar-
ing it via a database. With more intelligent pre-fetching, or

1/8 8/8 16/8 32/8 64/8 128/8 256/8 512/8
Number of Processors / Processors per Node

0

5

10

15

S
lo

w
do

w
n

D
ue

to
D

at
ab

as
e

(

CnC - Analytic
CnC - CoMD

Charm++ - Analytic
Charm++ - CoMD

Figure 6: Overhead of Database Assisted Distribu-
tion

even integration of the database into the runtime, this may
improve performance overall.

6.3 Overhead of Database Assisted Distribu-
tion

Finally, we measured the overhead of our approach by
comparing the execution times for the aforementioned ex-
periments and measuring the slowdown of our implemen-
tation versus the traditional runtime implementation. The
results of this can be seen in Figure 6.

In all cases, the overhead compared to the traditinial im-
plementation decreases as the number of processor nodes
increases. While counterintuitive, this is due to the underly-
ing runtime load balancers being better suited toward taking
advantage of shared memory as well as knowing what tasks
are assigned to what processor in advance. As the num-
ber of processor nodes increases, a larger percentage of time
is spent transferring data through distributed memory and
these features become less advantangeous.

While not negligible, the average overhead for the Charm++
implementation, with full CoMD calls, is 10.85%. For CnC
it is only 8.82%. While this may seem like a large penalty,
it may be an acceptable price to pay if the risk of a fault is
sufficiently high.

A negative overhead corresponds to a case in which the
traditional runtime implementation was outperformed by
the database assisted implementation.

7. FUTURE WORK
Currently, we focused on comparatively small problem

sizes so as to focus more on the approach than the implemen-
tation. As such, our CoHMM implementation is limited to a
single level of parallelism: flux computation tasks. However,
for larger problem sizes we hope to extend our approach to
exhibit more hierarchical parallelism by tiling at the macro-
solver level in addition to spawning tasks to compute the
flux computations.

Additionally, our current approach relies upon a NoSQL
database. While key–value stores meet our current needs,
we hope to adapt this to more traditional databases as well

as consider ways to take advantage of other technologies,
such as burst buffers [20].

We currently rely on the database to ensure the atomicity
of all writes. This may not remain viable and we may need
to implement ways to verify that the data is not corrupted.

Additionally, our results with the analytic solution in sec-
tion 6.2 suggest that, under certain circumstances, writing
and reading from an in-memory database can be less costly
than utilizing the serialization and data migration frame-
works built in to many runtimes. We wish to further investi-
gate this and possibly make a more tightly coupled approach
that builds upon this.

8. CONCLUSIONS
As the migration toward larger and more powerful com-

puters continues, fault tolerance becomes an even bigger
concern. This is incredibly important for scientific comput-
ing where runs can take hours, if not days, and a single
fault can crash the system and potentially corrupt the data.
While checkpointing is a solution, the overhead involved lim-
its the frequency at which checkpoints can be made.

In this paper, we propose a solution to this problem for
multiphysics applications where the desired checkpointing
frequency is high. We combine asynchronous task based
runtimes with in-memory databases to take advantage of the
task scheduling and load balancing of the runtimes as well
as a database assisted distribution in which we effectively
work directly from the checkpoints themselves. Instead of
using the runtimes for data migration we read and write to
the database with the runtime solely responsible for schedul-
ing work. In the event of a fault, we are able to instantly
resume as the complete state of the system is already pre-
served. This also allows us to more effectively overlap the
serialization costs associated with distributed runtimes with
the cost of reading and writing to the database itself.

We studied this by focusing on the CoHMM proxy ap-
plication which was designed to be representative of multi-
scale physics applications while simultaneously testing mod-
ern runtimes. We reduced the CoHMM proxy application to
a sequence of library calls and we implemented the applica-
tion both with a more traditional approach in which the
runtime handled all data migration as well as our database
assisted version. By studying the performance of this ap-
proach, we have determined that it is potentially beneficial
for multiphysics applications. While there is a performance
penalty, it is, on average, 8.82% with CnC and 10.85% with
Charm++. Depending on the likelihood of a fault and the
execution time of a given task, this can be an acceptable
performance penalty.

Additionally, with a greater focus on the database distri-
bution and a more hierarchical approach these costs may
decrease even more. This is suggested by our results with
the analytic solution which show that, under certain circum-
stances, the in-memory database may be less costly than the
serialization and data migration frameworks of the runtimes
themselves.

Furthermore, in addition to greatly increasing the fault
tolerance of scientific applications this approach has the ben-
efit of allowing for the rapid implementation of applications
in multiple runtime models. And, while the performance will
not be anywhere near as high as if we were to take advan-
tage of the more fine grain dependencies allowed by many
of these asynchronous task based models, this does give an

idea of the performance costs of the database assisted dis-
tribution as well as a comparatively simple path by which
existing scientific codes can begin to take advantage of these
runtimes with comparatively minimal modifications.

9. ACKNOWLEDGMENTS
This work was supported by the Los Alamos Information

Science and Technology (IS&T) Co-Design Summer School
and the U.S. Department of Energy (DOE) Office of Ad-
vanced Scientific Computing Research (ASCR) through the
Exascale Co-Design Center for Materials in Extreme Envi-
ronments (ExMatEx), and the Center for Nonlinear Studies
(CNLS).

Los Alamos National Laboratory, an affirmative action/equal
opportunity employer, is operated by Los Alamos National
Security, LLC for the National Nuclear Security Administra-
tion (NNSA) of the U.S. DOE under contract DE–AC52–
06NA25396. The authors would also like to acknowledge
the Institutional Computing Program at LANL for use of
their HPC cluster resources. Additional simulations were
performed on the CCS-7 cluster Darwin.

This work was approved for unlimited release under LA-
UR-15-26622.

10. REFERENCES
[1] ExMatEx: Extreme Materials at Extreme Scale.

http://www.exmatex.org/.

[2] exmatex/CoHMM.

[3] GCC, the GNU Compiler Collection - GNU Project -
Free Software Foundation (FSF).
https://gcc.gnu.org/.

[4] Intel R© C++ Compilers | Intel R© Developer Zone.

[5] Intel R© Math Kernel Library (Intel R© MKL) | Intel R©
Developer Zone.
https://software.intel.com/en-us/intel-mkl.

[6] Intel R© MPI Library | Intel R© Developer Zone. https:
//software.intel.com/en-us/intel-mpi-library.

[7] Open MPI: Open Source High Performance
Computing. http://www.open-mpi.org/.

[8] Parallel Programming Laboratory | UIUC.
http://charm.cs.uiuc.edu/software.

[9] Redis. http://redis.io/.

[10] redis/hiredis. https://github.com/redis/hiredis.

[11] Z. BudimliÄĞ, M. Burke, V. CavÃl’, K. Knobe,
G. Lowney, R. Newton, J. Palsberg, D. Peixotto,
V. Sarkar, F. Schlimbach, and others. Concurrent
collections. Scientific Programming, 18(3-4):203–217,
2010.

[12] F. Cappello. Fault tolerance in petascale/exascale
systems: Current knowledge, challenges and research
opportunities. International Journal of High
Performance Computing Applications, 23(3):212–226,
2009.

[13] R. Cattell. Scalable SQL and NoSQL data stores.
ACM SIGMOD Record, 39(4):12–27, 2011.

[14] L. Dagum and R. Menon. OpenMP: an industry
standard API for shared-memory programming.
Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[15] C. J. Date and H. Darwen. A guide to the SQL
Standard: a user’s guide to the standard relational

language SQL, volume 55822. Addison-Wesley
Longman, 1993.

[16] D. Givon, R. Kupferman, and A. Stuart. Extracting
macroscopic dynamics: model problems and
algorithms. Nonlinearity, 17(6):R55, 2004.

[17] L. V. Kale and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++. In
Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and
applications, OOPSLA ’93, pages 91–108, Washington,
D.C., USA, 1993. ACM.

[18] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, and others. Exploring traditional and
emerging parallel programming models using a proxy
application. In 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS
2013), Boston, USA, 2013.

[19] R. Koo and S. Toueg. Checkpointing and
Rollback-Recovery for Distributed Systems. IEEE
Transactions on Software Engineering,
SE-13(1):23–31, Jan. 1987.

[20] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst buffers in leadership-class storage systems. In
2012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–11, Apr. 2012.

[21] NVIDIA Corporation. NVIDIA CUDA C
Programming Guide. June 2011.

[22] E. Redmond and J. Wilson. Seven Databases in Seven
Weeks. Pragmatic Bookshelf; O’Reilly, 2012.

[23] D. Roehm, R. S. Pavel, K. Barros, B. Rouet-Leduc,
A. L. McPherson, T. C. Germann, and C. Junghans.
Distributed Database Kriging for Adaptive Sampling
(D2kas). Computer Physics Communications,
192:138–147, 2015.

[24] B. Rouet-Leduc, K. Barros, E. Cieren, V. Elango,
C. Junghans, T. Lookman, J. Mohd-Yusof, R. S.
Pavel, A. Y. Rivera, D. Roehm, and others. Spatial
adaptive sampling in multiscale simulation. Computer
Physics Communications, 185(7):1857–1864, 2014.

[25] M. L. Stein. Interpolation of spatial data: some theory
for kriging. Springer, 1999.

[26] M. O. Steinhauser. Computational multiscale modeling
of fluids and solids: theory and applications. Springer,
Berlin ; New York, 2008.

[27] The Khronos Group. OpenCL âĂŞ The open standard
for parallel programming of heterogeneous systems.
2014. http://www.khronos.org/opencl/.

[28] E. Weinan, B. Engquist, X. Li, W. Ren, and
E. Vanden-Eijnden. Heterogeneous multiscale
methods: a review. Commun. Comput. Phys,
2(3):367–450, 2007.

[29] G. Zheng, L. Shi, and L. V. KalÃl’. FTC-Charm++:
an in-memory checkpoint-based fault tolerant runtime
for Charm++ and MPI. In Cluster Computing, 2004
IEEE International Conference on, pages 93–103.
IEEE, 2004.

