
Accommodating Thread-Level Heterogeneity in Coupled Parallel Applications

Samuel K. Gutiérrez∗†, Kei Davis∗, Dorian C. Arnold†, Randal S. Baker∗, Robert W. Robey∗
Patrick McCormick∗, Daniel Holladay∗, Jon A. Dahl∗, R. Joe Zerr∗, Florian Weik∗, and Christoph Junghans∗

∗Los Alamos National Laboratory, Los Alamos, New Mexico 87545
†Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131

Email: samuel@lanl.gov

Abstract—Hybrid parallel program models that combine
message passing and multithreading (MP+MT) are becoming
more popular, extending the basic message passing (MP)
model that uses single-threaded processes for both inter- and
intra-node parallelism. A consequence is that coupled paral-
lel applications increasingly comprise MP libraries together
with MP+MT libraries with differing preferred degrees of
threading, resulting in thread-level heterogeneity. Retroactively
matching threading levels between independently developed
and maintained libraries is difficult; the challenge is exacer-
bated because contemporary parallel job launchers provide
only static resource binding policies over entire application
executions. A standard approach for accommodating thread-
level heterogeneity is to under-subscribe compute resources
such that the library with the highest degree of threading per
process has one processing element per thread. This results in
libraries with fewer threads per process utilizing only a fraction
of the available compute resources.

We present and evaluate a novel approach for accommo-
dating thread-level heterogeneity. Our approach enables full
utilization of all available compute resources throughout an
application’s execution by providing programmable facilities
to dynamically reconfigure runtime environments for compute
phases with differing threading factors and memory affinities.
We show that our approach can improve overall application
performance by up to 5.8x in real-world production codes.
Furthermore, the practicality and utility of our approach has
been demonstrated by continuous production use for over one
year, and by more recent incorporation into a number of
production codes.

Keywords-MPI, MPI+X, Pthreads, OpenMP.

I. INTRODUCTION

Parallel and distributed applications such as multi-physics

applications play crucial roles in science and engineering.

Because of their interdisciplinary nature these applications

are often coupled, that is, built via the integration (or

coupling) of independently developed and tuned software

libraries linked into a single application. In such coupled

applications, a poorly performing library can lead to over-

all poor application performance and increased time-to-

solution. It is critical that each library is executed in a

manner consistent with its design and tuning for a particular

system architecture and workload. Generally, each library

(input/compute phase pair) has its own optimal runtime
configuration, for example, number of processes or threads.

In coupled applications, effective configuration parameters

are determined (most often heuristically, manually, and

offline) for all performance-critical computational phases.

Configuration conflicts arise when an optimal configuration

for one phase is suboptimal for another. There are a variety

of approaches for resolving configuration conflicts. At one

extreme lie applications written to parallel and distributed

programming systems such as Legion [1] and Charm++ [2],

which by design resolve such conflicts at runtime. At the

other extreme lie MP+MT applications that use message

passing (MP) for inter- and intra-node parallelism and mul-

tithreading (MT) for additional intra-node parallelism, where

the common approach is to allocate resources to satisfy the

most demanding compute phase. The library with the highest

degree of threading per process has one processing element

per thread, and libraries with fewer threads per process

run under-subscribed, using only a fraction of the available

compute resources when running.

In this work we study coupled MP+MT applications with

dynamic, phased configuration conflicts. Focusing on appli-

cations based on the Message Passing Interface (MPI)1 [3],

we address the practical challenges of thread-level hetero-
geneity, where a coupled application comprises MPI libraries

that require different degrees of thread-level parallelism.

We present a general methodology and corresponding im-

plementation for dynamically (at runtime) accommodating

coupled application configuration conflicts in a way that 1) is

composable, 2) is hardware topology aware, 3) is MPI imple-

mentation agnostic,2 4) works with a variety of unmodified

Pthread-based parallel programming systems, 5) increases

overall system resource utilization, 6) reintroduces lost paral-

lelism, and 7) is straightforward to incorporate into existing

applications. To the best of our knowledge this is the first

work to satisfy all of these criteria. Finally, we evaluate

our methodology by applying it to three production-quality

simulation codes that employ a variety of parallelization

strategies. Our results show that significant performance

improvements can be achieved when used in environments

positioned to make effective use of the additional levels of

parallelism our approach enables.

1MPI has been the predominant scientific parallel programming system
for the last two decades.

2So long as the underlying representation of an MPI process is a system
process. This is true for most MPI implementations.

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075 2017

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPS.2017.13

469

II. COUPLED APPLICATIONS AND THEIR CHALLENGES

As previously described, parallel applications are often

built by coupling independently developed and tuned soft-

ware libraries. For example, coupled physics applications

are often implemented in a fashion where each physics

library, in turn, updates common application state data. Such

scientific libraries tend to have their own preferred data

discretization scheme, for example, unstructured meshes,

regular meshes, or particles, so they manage their own

distributed state and parallelization strategies with little or

no coordination across library boundaries. More generally,

libraries interact by exchanging data through application

programming interfaces (APIs) that remap data from one

library domain to another, for example, from a field defined

on a computational mesh to a system of linear equations, or

from one mesh to another as illustrated in Figure 1. Quite of-

ten, such data structure remappings suggest complementary

remappings of tasks (processes/threads) to hardware. Inter-

library interactions can take place many times during the

lifespan of an application. Furthermore, at a given program

point these interactions may change during the course of a

simulation to accommodate new requirements, for example,

particular physics appropriate for a particular spatial scale

and resolution.

A. Coupled Application Parallelism

Parallel scientific application executions exploit data par-

allelism, where many instances of the same computation

execute in parallel on different data and on different compu-

tational resources. In the pure MP model, message passing

is used for both inter- and intra-node parallelism (other than

SIMD vectorization). For MPI applications this is called

MPI-everywhere. In this model, computational resources

are usually fully subscribed, that is, the program’s set of

single-threaded processes is in one-to-one correspondence

with processing elements (PEs), i.e., cores or hardware

threads, and parallelism is realized via either single program,
multiple data (SPMD) or multiple program, multiple data
(MPMD) schemes.

Alternatively, a scientific application can employ a hy-

brid model using MP plus multithreading (MP+MT) for

inter- and intra-node parallelism, respectively. For MPI

applications, MP+MT is an instance of the more general

MPI+X model in which applications employ additional on-

node parallelization strategies. This approach is increasingly

popular as core (or hardware thread) counts increase in

shared-memory nodes, and because of the flexibility and

performance potential of a hierarchical approach [4], [5],

[6].

While MPI+X is gaining popularity it is not yet ubiqui-

tous. Restructuring large, mature code bases to effectively

exploit new parallel programming systems is challenging

and generally requires a significant amount of effort that is

often unjustifiable because of cost or priority. Furthermore, it

Remap

Remap

C
om

puteC
om

pu
te

…

Figure 1: Notional illustration of computational phases interleaved
with data structure remapping phases across domains.

is not uncommon that an MPI-everywhere version of a scien-

tific code performs as well or better than its MPI+X instan-

tiation [7], [8], which discourages speculative hybridizing

of existing codes. Finally, while an MPI+X library may be

written such that its runtime configuration is settable within

some range at startup, the particular runtime parameters that

give best performance may depend on static or dynamic

variables such as input and problem scaling factors. For

all of these reasons, coupled scientific codes will for the

foreseeable future continue to be built from libraries that

use a mix of non-uniform runtime configurations. A runtime

configuration may include the total number of processes to

use for SPMD or MPMD parallelism, a process threading

degree for shared-memory multithreading, and a mapping

of tasks (processes and threads) to compute resources, e.g.,

PEs and memories.

B. Coupled Applications with Conflicting Configurations

For decades coupled applications had relatively uniform

library configuration requirements because they were built

from single-threaded libraries, so static configurations set at

application launch were sufficient. Today, however, configu-

ration conflicts are common in coupled applications because

they comprise independently developed and maintained sci-

entific libraries that have been written or ported to hybrid

MP+MT programming models.

1) Static Configurations: In today’s static computing en-

vironments, dynamically accommodating inter-library con-

figuration conflicts is difficult. While it is well-understood

that binding tasks to hardware resources can improve the

performance of an MPI application [9], [10], parallel ap-

plication launchers such as orterun, srun, aprun, and Hydra

only allow static allocations and static binding capabilities:

launch-time configurations persist for the entire parallel

application’s execution. Most single-threaded applications

are launched by binding a single PE dedicatedly to each

process. This mitigates the ill effects of task migration in

multiprocessor architectures, for example, cache invalidation

that occurs when a thread moves from one PE to another.

With a static configuration for coupled MP+MT applica-

tions with conflicting configurations, the two basic configu-

ration options are over-subscription and under-subscription.

In over-subscribed configurations, all allocated resources are

470

PE occupied
by task Ti

TiCompute phase Vacant PE
Ti
Tj

PE occupied by
tasks Ti and Tj

P0 P1 P2 P3 P4 P5 P6

t

u(
t)

T0

T2

T1

T3

T0
T4

T2
T6

T1
T5

T3
T7

T0

T2

T1

T3

(a) Time evolution of a static over-
subscribed MPI+X configuration.

T0

T1

T0

T2

T1

T3

T0

T1

t

u(
t)

P0 P1 P2 P3 P4 P5 P6

(b) Under-subscribed MPI+X
with typical wide binding policy.

Figure 2: Illustration of compute resource utilization u(t) by tasks
(processes and threads) over time for two MPI+X configurations.

always in use, i.e., the number of PEs equals the number of

threads in the computational phase with the lowest degree

of threading per process. In phases that require higher

numbers of threads, resources are over-subscribed with mul-

tiple threads per PE. Figure 2a illustrates the evolution of

an over-subscribed MPI+X configuration where hardware

utilization, u(t), remains constant at 100%. In this example

MPI-only phases fully-subscribe hardware resources (phases

P0-P2, P5-P6), while multi-threaded regions over-subscribe

them (phases P3-P4). In practice over-subscription is gen-

erally avoided because the increased resource contention in

threaded regions tends to negatively affect overall applica-

tion performance and scalability [11].

The standard approach for accommodating thread-level

heterogeneity in coupled MPI applications is to statically

(at launch time) under-subscribe compute resources such

that the computational phase with the highest degree of

threading per MPI process has one PE per software thread.

As a consequence, phases with fewer threads per process

use only a fraction of the available compute resources,

thus leading to poor system resource utilization. Figure 2b

illustrates the evolution of compute hardware resource uti-

lization over time for a typical MPI+X configuration. Over

time, hardware utilization fluctuates between 50% and 100%

as the application moves in and out of regions with dif-

fering degrees of multithreading. For phase-homogeneous

MPI+X-only applications—ones with relatively static work-

load characteristics—under-subscription is reasonable when

the cost of lower coarse-grained data parallelism is out-

weighed by the benefits of introducing multi-threading.

2) Lost Parallelism via Resource Under-Subscription:
Given an application that strong-scales perfectly (the theoret-

ical upper bound), we can calculate the theoretical slowdown

of static under-subscription approaches using Amdahl’s law,

S =
1

∑m
i=1

pi

si

(1)

where n is the total number of available processors; m is the

total number of phases; ti is the optimal threading degree

23 24 25 26 27 28 29 210 211

Number of Processors

21
22
23
24
25
26
27
28
29
210
211

S
pe

ed
up

Ideal
t2 = 2

t2 = 4

t2 = 8

Figure 3: Log-log plot of modeled speedups.

for a phase i; tmax = max(t1, . . . , tm); ui = ti/tmax is a

phase’s processor under-subscription factor; and si = n · ui

is the speedup factor for a given phase. Consider two serial

phases L1 and L2 whose percentages of execution time are

equal: p1 = 0.5 and p2 = 0.5. Assuming that L1 runs

optimally with an MPI-everywhere parallelization strategy

and L2 optimally with an MPI+X strategy, Figure 3 plots

the theoretical speedups of three under-subscribed runtime

configurations where L1’s threading degree is fixed at t1 = 1
and L2’s varies. We compare those to an idealized configu-

ration (Ideal) where each phase of the parallel computation

is exposed to all available processors. This simple model

illustrates the potential losses in performance that can result

from today’s static under-subscription approach.

In summary, coupled scientific applications based on

the MP+MT model can comprise libraries with conflicting

configuration requirements. For such applications, today’s

static computational environments necessitate suboptimal

over-subscribed or under-subscribed configurations. There-

fore there is a need for techniques that address dynamic,

conflicting configurations in coupled MP+MT applications.

III. DYNAMIC MPI+X WITH QUO

Next we present a general, composable runtime ap-

proach for programmatically accommodating library con-

figuration conflicts that arise in dynamic, coupled, thread-

based MPI+X applications. Our design is influenced by

requirements for generality, composability, efficiency, and

pragmatism in the face of production realities, that is, easily

fitting into large, established code bases that may still be

under active development.

QUO (as in “status quo”) is both a model and a cor-

responding implementation that facilitates the dynamically

varying requirements of computational phases in coupled

MP+MT applications. Specifically, QUO allows an appli-

cation to dynamically query and reconfigure its process

bindings. While the model is general, the current implemen-

tation focuses on Pthread-based MPI+X applications [12].

Fundamentally, QUO uses hwloc [9] and MPI, interfacing

with those libraries and the application as shown in Fig-

ure 4. The hwloc library is used to gather system hardware

topology information and to control process binding policy

changes during the target application’s lifetime. MPI is used

471

MPI Application

QUO Library

hwloc MPI Library

Figure 4: QUO architecture diagram.

primarily for exchanging setup information during QUO
context (QC) setup, which is discussed in a later section.

The portable, production-quality, open-source runtime li-

brary is written in C, but also provides C++ and Fortran

language bindings. The QUO API operates on QC pointers.

This design allows for the creation and manipulation of

multiple QCs within a single application that are either

encapsulated within a library or passed from one library

to another—a key for composability. The remainder of this

section presents the principle concepts and mechanisms that

underlie our design and approach.

A. QUO Contexts

QUO contexts, which encapsulate state data gathered and

manipulated by QUO, are created via a collective call to

QUO_create() in which all members of the initializing

communicator must participate. QCs may be created at any

time after the underlying MPI library has been initialized

and remain valid until freed via QUO_free(), which must

occur before the MPI library has been finalized. QUO can

maintain multiple independent, coexisting QCs within a

single application.

B. Hardware/Software Environment Queries

Contemporary HPC node architectures are complex and

diverse, demanding careful consideration of their resource

(PE and memory) configurations. To effectively guide the

dynamic (runtime) mapping of application-specific software

(logical) affinities to hardware resources, one must be able to

obtain both the underlying platform’s resource information

and the application’s current usage of those resources. In this

regard, QUO’s approach is straightforward: its API provides

thin convenience wrappers around commonly-used hwloc

hardware query routines for hardware information. Relevant

hardware information includes memory localities relative to

PEs in non-uniform memory access (NUMA) architectures

and hierarchical hardware relationships (e.g., determining

how many cores are contained in a particular socket).

Process affinity state queries provide another mecha-

nism to influence runtime software-to-hardware mapping

decisions based on the hardware affinities of cooperating

processes within a compute node. For example, on a per-

node basis, one can query for the set of MPI processes

with affinity to a particular hardware resource. In Linux,

a thread’s CPU affinity mask determines the set of CPUs on

which it is eligible to run. For these queries, QUO uses a

1 QUO_create(&ctx, MPI_COMM_WORLD) // Create a context
2 // Query runtime software/hardware environment to
3 // influence runtime configuration selection algorithm
4 ...
5 tres = NUMA_NODE // Set target resource to NUMA
6 // Let QUO determine a set of node-local MPI processes
7 // (optimized for maintaining data locality) that
8 // satisfy the distribution criterion that no more
9 // than max_pe processes be assigned to each NUMA

10 // domain in the host
11 QUO_auto_distrib(ctx, tres, max_pe, &in_dset)
12 // If in_dset is true, then the calling process is a
13 // member of the distribution set
14 if (in_dset)
15 // Expand affinity to cover resources with
16 // affinity to caller’s closest NUMA domain
17 QUO_bind_push(ctx, tres)
18 // Perform coupled threaded computation with newly
19 // enacted process hardware affinity policy
20 A_coupled_threaded_library_call(in_args, &result)
21 // Revert to prior process binding policy before
22 // entering node-local QUO barrier
23 QUO_bind_pop(ctx)
24 // Quiesce set of active MPI processes not in
25 // distribution set by yielding their use of compute
26 // resources, while those who are spawn threads onto
27 // those resources
28 QUO_barrier(ctx)
29 // Barrier complete, all MPI processes participate in
30 // result dissemination (via message passing) to relay
31 // result to all cooperating processes in calculation
32 ...
33 QUO_free(ctx) // Relinquish context resources

Example 1: A caller-driven policy example using hardware
queries and application characteristics to guide a dynamic
affinity policy using QUO (C API pseudocode).

combination of hwloc and MPI services. For a given QC,

QUO uses MPI to share a cached mapping of MPI processes

to process IDs, and hwloc is used to query the affinities of

the relevant processes. Note that to effectively map tasks to

PEs, both intra-process (first party) and inter-process (third

party) affinity state queries are necessary.

C. Programmable Dynamic Process Affinities

QUO allows arbitrary process binding policies to be en-

acted and reverted during the execution of an MPI+X appli-

cation. Ideally, binding instantiations and reversions will co-

incide with the entries and exits of the application’s different

computational phases. Accordingly, QUO exposes a simple,

stack-based semantics through QUO_bind_push() and

QUO_bind_pop(). For example, a new process binding

policy can be instantiated before entering a threaded com-

putational phase via QUO_bind_push() and then reverted

at the end of that phase via a QUO_bind_pop(). These

semantics allow a user to conveniently and dynamically

stack an arbitrary number of binding policies that map to the

potentially stacked composition of coupled components in a

QUO-enabled MPI+X application (Listing I and Figure 5).

QUO offers two variants of QUO_bind_push(). The

first pushes a hardware affinity policy specifically outlined

by the caller. This variant unconditionally, without regard to

the caller’s current hardware affinities, changes the calling

process’s affinity mask to encompass the PEs dominated by

the provided policy. QUO also provides a more sophisticated

472

P0 P1 P2 P3 P4 P5 P6

t

u(
t)

T0

T2

T1

T3

T0

T4

T1

T5

T0

T2

T1

T3

Figure 5: Illustration of compute resource utilization by tasks over
time u(t) for a QUO-enabled MPI+X configuration.

version of this call that first queries the caller’s current

hardware affinities to choose the closest target resource that

dominates the caller’s current hardware affinities in hwloc’s

hardware object tree.3 If, for example, the caller currently

has an affinity to a core in socket 3, then a call to the latter

variant with a target resource of SOCKET will automatically

expand the caller’s affinity mask to encompass all PEs within

socket 3. The rationale for this functionality is to maintain

data locality (that is, memory affinity) while moving in and

out of process binding policies, in this case keeping data

resident within one NUMA region across library calls.

Intra- and inter-process affinity state queries are used to

guide dynamic binding policy choices and are often used in

concert with QUO_bind_push(). For added convenience,

QUO offers an automatic task distribution capability via

QUO_auto_distrib(). This routine automates the two-

step query and bind process at the cost of generality. Specif-

ically, this routine allows callers the ability to evenly dis-

tribute tasks across a specified resource with minimal effort.

For example, one can specify that a maximum of two tasks

be assigned to each socket on the target compute resource,

and this routine will do so by choosing at most two tasks

that are enclosed within (that is, have an affinity to) each

respective socket. When there exists a subset of cooperating

processes not bound to a particular hardware resource, QUO

first favors bound processes, adding unbound processes only

if the distribution criteria were not satisfied with bound
processes. This maintains data locality when moving in and

out of process binding policies, easing programmer burden.

With these primitives, applications can dynamically create

policies tailored specifically to their current needs based

on the underlying hardware characteristics and the current

process binding policies of other participating processes

within a compute node.

D. Node-Level Process Quiescence

To make our approach maximally effective there must be

a portable and efficient mechanism for quiescing sets of MPI

processes to yield their use of compute resources to make
room for more threads of execution, as illustrated in Listing I

3hwloc represents a hardware topology as a dominance tree of logical
hardware objects. For example, the root is a machine object that dominates
all other system resource objects.

P0 Four single-threaded processes P = {T0, T2, T1, T3} are
launched onto cores R = {C0, C1, C2, C3}, where each process
T0,...n−1 ∈ P has affinity to the core on which it was
launched: T0/C0, T2/C1, T1/C2, T3/C3. Process state data
S = {M0,M2,M1,M3} is initialized for each process in P .

P1 Processes in P execute in parallel during first compute phase,
fully subscribing the compute resources in R.

P2 Processes in P map data from their domain X (resident in S)
to the callee’s domain Y , M : Xm → Yn, where m = |P |
and n = |L|. Then two processes in P , namely Q = {T2, T3},
are quiesced while the remaining processes L = P − Q push
a new binding policy such that their hardware affinities expand
to cover two cores each: T0/C0||C1, T1/C2||C3. State in M0

is now shared between T0, T4, while M1 in a similar fashion is
shared between T1 and T5.

P3 Two new threads P̂ = {T4, T5} are spawned by their respective
parents in L onto cores C1, C3, namely cores once occupied by
MPI processes in Q.

P4 Processes and threads residing in L∪P̂ execute in parallel during
this compute phase, fully subscribing the compute resources in
R. The threaded compute phase completes and the spawned
threads in P̂ die or are suspended by the threading library’s
runtime. Processes in L revert to their previous binding policies
by popping them off their respective affinity stacks.

P5 Processes in Q resume execution on the computational resources
they relinquished in P2.

P6 Processes in P map data from domain Y (resident in Ŝ =
{M0,M1}) back to the caller’s domain X (residing over state
in S), M : Yn → Xm, where n = |L| and m = |P |. That
is, results are disseminated via explicit message passing from n
processes in L to m processes in P .

Listing I: Explanation of QUO-enabled MPI+X phases in Figure 5.

and Figure 5. A naive approach might use MPI-provided

facilities such as an MPI_Barrier() across a sub-

communicator containing only processes that may communi-

cate over shared memory, for example, a sub-communicator

created by calling MPI_Comm_split_type() with

MPI_COMM_TYPE_SHARED as its split type. While this

approach certainly works (as demonstrated in an early

implementation of QUO), it introduces prohibitively high

overheads and is therefore unusable in practice (an analysis

of process-quiescence-induced application overhead is pre-

sented in Section IV-B). Instead, we employ an efficient,

portable approach for compute-node-level process quies-

cence via QUO_barrier(). Its underlying machinery is

straightforward:

1) At QUO_create() a shared-memory segment is cre-

ated by one MPI process and then attached to by all

processes P that are a) members of the initializing

communicator and b) capable of communicating over

shared memory.

2) A pthread_barrier_t is embedded into the

shared-memory segment with an attribute that allows

all processes with access to the shared-memory seg-

ment to operate on it. Finally, its count parameter

is set to the number of MPI processes that must

473

call pthread_barrier_wait() to complete the

barrier, i.e., the number of processes in P .

E. Data Dependencies

Before the number of active MPI processes can be safely

increased or decreased, data must be exchanged among

node-local processes to satisfy all inter-process data depen-

dencies. Typically, this occurs via node-local gathers and

scatters before and after QUO-enabled regions as described

in Listing I (P2 and P6). As is typical for message passing

models, inter-process data dependences are managed explic-

itly and programmatically. Once dependencies are satisfied,

QUO can enact arbitrary task reconfigurations.

F. Policy Management

Policies that influence how logical (software) affinities

are mapped to hardware resources may be managed with

QUO in a variety of ways. In a caller-driven approach,

as shown in Example 1, the caller modifies the callee’s

runtime environment and assumes responsibility for resource

selection (the computational resources to be used by a

particular computational phase), MPI process selection (the

set of MPI processes that will use the selected resources),

and process affinity selection (pushing and popping binding

policies as the target library’s computational phases are

entered and exited, respectively). A caller-driven approach is

appropriate when using off-the-shelf threaded libraries that

are difficult or impossible to modify at the source code level.

This requires the caller to be cognizant of the inner workings

of the target library to make informed policy decisions.

In contrast, callee-driven policies are encapsulated within

called libraries such that the caller may be oblivious to

policy decisions made by the libraries it uses. Because these

policies are directly embedded in the target library and are

under developer control they can be precisely tailored to the

library’s implementation and runtime requirements.

IV. QUO PERFORMANCE AND EFFECTIVENESS

Our performance evaluation is designed to show per-

formance and scaling characteristics for both QUO micro-

operations and for full applications. For the former, we study

the costs of the key QUO operations. For the latter, we

integrate QUO into three different production-quality par-

allel scientific applications using a variety of parallelization

strategies. With these we measure and analyze QUO’s costs

and benefits, and how these vary with scale. Integrating QUO

into three diverse codes demonstrates the generality of the

QUO approach.

A. Micro-Benchmark Results: Cost of QUO Operations

We quantify the individual overhead costs for a represen-

tative set of QUO operations. For each operation we measure

the time required to complete that operation 100 times in

a tight loop—at each scale, processes co-located on the

CPU
Sockets
per Node

NUMA Domains
per Socket

Cores
per Socket

AMD 6136 2 2 8

Intel E5–2670 2 1 8

Intel E5–2660 2 1 10

Table I: Overview of system architectures.

same compute node simultaneously execute this loop. Micro-

benchmark results were collected on a Cray XE6 platform

built from compute nodes containing AMD 6136 processors.

Further architectural details are provided in Table I.

Figure 6 shows each operation’s average execution

times as a function of scale. All QUO operations, except

QUO_create() and QUO_free(), are performed on

a per-node basis and their overheads are a function of

the number of concurrent QUO processes within a single

compute node. This phenomenon is observed in job sizes

ranging from one to sixteen processes since our test platform

contains sixteen-core compute nodes. QUO_create() and

QUO_free() overheads depend on the total number of

processes in the initializing communicator because they

require global (inter-node) process communication. Figure 6

shows that even beyond 16 processes (the node width) the

performance of these two operations continues to grow. Even

so, their costs are modest at ∼100ms at 2,048 processes

across 128 nodes. Furthermore, these costs are amortized

over the life of a QUO context: we expect most appli-

cations to use long-lived contexts that persist until library

termination. Note that a long-lived context does not imply

a single, static configuration; rather, it implies a single

dynamic instance of QUO-maintained state.

B. Application Overhead from Process Quiescence

To evaluate the overhead of QUO process quiescence—

a key QUO mechanism—we compare two approaches,

namely MPI_Barrier() and QUO_barrier(). The

benchmarking application is simple: an MPI-everywhere

driver program that calls 2MESH’s computationally inten-

sive MPI+OpenMP library described in Table IV. Depending

1 2 4 8 16 32 64 128 256 512 1024 2048

Job Size (Number of Processes)

10−1

100

101

102

103

104

105

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

(μ
s)

Context Create
Context Free
Hardware Query

Affinity Query
Bind Push
Bind Pop

Auto Distribution
Barrier

Figure 6: Log-log plot: average execution times of a representative
set of QUO operations on a Cray XE6.

474

on the setup, before the multithreaded computation can be

executed there is either no quiescence (ideally), or quies-

cence using one of the two approaches. We compare wall-

clock times reported by the application when using each

mechanism. The single-node experiment is as follows.

1) 16 MPI processes are launched with a core binding

policy that fully subscribes the compute node.

2) Four MPI processes are chosen such that each has

affinity to a different NUMA domain. The processes

in this set, P , will enter the threaded compute phase.

3) Before executing the threaded 2MESH phase, pro-

cesses in P push a NUMA binding policy to accom-

modate the four OpenMP threads they will spawn,

while the remaining processes are quiesced using either

MPI_Barrier() or QUO_barrier().

Table II contrasts the performance of MPI_Barrier()
and QUO_barrier() with that of the ideal case in which

four MPI processes (each with a NUMA binding policy)

are launched across all four NUMA domains on the target

architecture, thereby avoiding the need for quiescing any

processes, thus mimicking what today’s MPI+X codes do in

practice. The results show that our QUO_barrier() im-

plementation significantly outperforms MPI_barrier()
and is close to the ideal case where quiescence is not

necessary. In particular, our approach introduces approxi-

mately an 8% overhead, while the naive approach using

MPI_Barrier() over MPI_COMM_WORLD introduces ap-

proximately 116% overhead.4

Process
Quiescence
Mechanism

Average
Execution
Time

Standard
Deviation

Mechanism-
Introduced
Overhead

Ideal 16.46 s 0.05 s —

QUO barrier 17.82 s 0.32 s 8.24%

MPI Barrier 35.49 s 0.17 s 115.63%

Table II: Quiescence-induced overhead by mechanism.

C. Application Results: Evaluating QUO’s Effectiveness

Table IV details the three QUO-enabled parallel scientific

applications using all of the supported language bindings

(C, C++, and Fortran) and a diversity of parallelization

strategies, workloads, and software environments. All appli-

cation configurations represent real workloads to showcase

different application communication and computation char-

acteristics.

We evaluated QUO’s effectiveness at increasing resource

utilization with comparisons against a baseline (without

QUO) that under-subscribes compute nodes such that the

computational phase with the highest degree of threading

per process (tmax) has one PE per thread. This baseline

4Because this experiment runs on a single compute node this setup mim-
ics the shared-memory sub-communicator approach outlined in Section III.

Identifier
MPI+X Process
Binding Policy

Processes per
Resource tmax

2MESH-W NUMA 1/NUMA 4

RAGE-W Machine 1/Machine 16

ESMD-W Socket 10/Socket 2

2MESH-S NUMA 1/NUMA 4

RAGE-S Machine 1/Machine 16

ESMD-S Socket 5/Socket 4

Table III: Application configurations.

represents the previous, long-standing mode for production

runs of these applications. Table III shows the application

configurations. For baseline experiments, MPI processes are

launched with a static process binding policy set by either

aprun (Cray-MPICH) or orterun (Open MPI). For example,

2MESH is launched with four MPI processes per node

(one process per NUMA domain), each with a NUMA

binding policy. In contrast, QUO-enabled experiments fully

subscribe resources at startup such that each MPI process is

bound to a single core (by the parallel launcher) and MPI+X

configuration policies are enacted dynamically using QUO.

QUO Performance Results: We evaluated the three QUO-

enabled applications on three different platforms at scales

up to 2,048 PEs (and processes).5 Figure 7 shows all of the

application performance and scaling results: 30 sets of ex-

periments, ten different application/workload combinations,

each executed at three different scales. QUO’s effectiveness

is determined principally by two criteria: 1) how much of

an application’s overall runtime is dominated by under-

subscribed computational phases and 2) how well these

otherwise under-subscribed computational phases strong-

scale at full node utilization.

The overall average speedup across all 30 QUO-enabled

workloads was ∼70%. Of these workloads, 26 show an

overall speedup when using QUO, with more than half the

cases (16) yielding speedups greater than 50%. A maximum

QUO-enabled speedup of 476% is yielded by RAGE-S3 at

64 PEs and seven other workload configurations showed a

speedup of greater than 100%. The reason these workloads

realize huge benefits when dynamically configured using

QUO is because their otherwise under-scribed computational

phase (in this case the MPI-everywhere phase) strong-scales

well with the given realistic input sets.

Four of the QUO-enabled workloads yield very modest

speedups (less than 10%) and four other cases in fact

demonstrated slowdowns (ESMD-S2–640, 2MESH-W4–

128, 2MESH-W4–512, and 2MESH-W4–512). There are

three main reasons for this: 1) as previously mentioned, if the

under-subscribed phase does not strong-scale well, QUO’s

5The seemingly strange PE counts (80, 320, 640) in the ESPResSo
experiments are because they were run on a system with 40 hardware
threads per node (2 hardware threads per core).

475

ID Description Environment Architecture
2MESH LANL-App is an application used at Los Alamos National Laboratory (LANL)

comprising two libraries L0 and L1. L0 simulates one type of physics on an
adaptive structured mesh and L1 simulates a different physics on a separate,
structured mesh. L0 phases are MPI-everywhere; L1 phases are MPI+OpenMP.

Intel 15.0.4
Cray-MPICH 7.0.1
QUO 1.2.4

AMD 6136
32 GB of RAM
Cray Gemini

RAGE xRage+inlinlte: xRage solves the Euler equations of conservation of mass,
momentum, and energy on an adaptive structured mesh. inlinlte solves for atomic
populations in cases not in local thermodynamic equilibrium. xRage phases are
MPI-everywhere; inlinlte phases are multi-threaded with Kokkos [13].

Intel 16.0.3
Open MPI 1.6.5
QUO 1.2.9

Intel E5–2670
64 GB of RAM
Qlogic QDR IB

ESMD MD+Analysis: ESPResSo [14] is a molecular dynamics (MD) program for
coarse-grained soft matter applications. Its analysis routines typically calculate ob-
servables (functions of the current system state). MD phases are MPI-everywhere;
analysis phases are MPI+OpenMP.

GCC 4.9.3
Open MPI 1.10.3
QUO 1.3-alpha

Intel E5–2660
128 GB of RAM
10 Gb Ethernet

Table IV: Target applications and their respective environments used for this study. 2MESH uses the QUO Fortran API; inlinlte is a C++
application, but uses the QUO C API; and ESMD uses the QUO C++ API.

128 512
2048 128 512

2048 128 512
2048 128 512

2048 128 512
2048 64 256 512 64 256 512 64 256 512 80 320 640 80 320 640

Job Size (Number of Available Processing Elements)

0

20

40

60

80

100

120

E
xe

cu
tio

n
Ti

m
e

(N
or

m
al

iz
ed

)

Single-Threaded Library Multi-Threaded Library Domain Mapping Without QUO With QUO

2MESH-W1 2MESH-W2 2MESH-W3 2MESH-W4 2MESH-S5 RAGE-W1 RAGE-W2 RAGE-S3 ESMD-W1 ESMD-S2

Figure 7: Application results without and with QUO. Application configurations are outlined in Table III.

R
A

G
E

-S
3-

64

R
A

G
E

-W
2-

64

2M
E

S
H

-W
2-

12
8

2M
E

S
H

-S
5-

12
8

2M
E

S
H

-S
5-

51
2

2M
E

S
H

-W
1-

12
8

R
A

G
E

-S
3-

25
6

R
A

G
E

-W
1-

64

2M
E

S
H

-W
2-

51
2

2M
E

S
H

-W
1-

51
2

R
A

G
E

-W
2-

25
6

2M
E

S
H

-W
1-

20
48

R
A

G
E

-W
1-

25
6

R
A

G
E

-W
2-

51
2

2M
E

S
H

-W
2-

20
48

2M
E

S
H

-S
5-

20
48

R
A

G
E

-S
3-

51
2

E
S

M
D

-S
2-

80

R
A

G
E

-W
1-

51
2

2M
E

S
H

-W
3-

12
8

E
S

M
D

-S
2-

32
0

E
S

M
D

-W
1-

64
0

E
S

M
D

-W
1-

32
0

2M
E

S
H

-W
3-

51
2

E
S

M
D

-W
1-

80

2M
E

S
H

-W
3-

20
48

E
S

M
D

-S
2-

64
0

2M
E

S
H

-W
4-

51
2

2M
E

S
H

-W
4-

12
8

2M
E

S
H

-W
4-

20
48

−50

0

50

100

150

S
pe

ed
up

(%
)

476 183 138 137 135 128

115 107 99 95 86
66 58 53 52 51

37 37 37
20 18 12 7 5 4 1 -5 -17 -19 -27

Figure 8: QUO-enabled speedups (QUO versus a standard under-subscribed baseline) for all presented workloads in Figure 7.

approach will not yield a significant performance boost;

2) QUO can increase the costs of data domain remappings;

and 3) in some cases, QUO appears to add some overhead to

the fully-subscribed computational phase. These phenomena

can be observed in Figure 7.

V. PRACTICAL CONSIDERATIONS

As previously described, commonly used parallel appli-

cation launchers only provide for static, whole-application

binding policies, or none at all, and each has its own

syntax for command-line or configuration-file specification

of binding policy. Using QUO one does not need to specify

binding policies via the job launcher: QUO can completely

specify and manage resource bindings efficiently and dy-

namically. While QUO is simple, efficient, effective, and

convenient, it does introduce some practical considerations

and complexities:

• Increased Code Complexity: With the quiescing and

later resumption of tasks, application data re-mappings

across library domains may increase. Either the library

developer or the library user must be prepared to deal

with this added programming burden. We posit that in a

well-engineered library such complexity is manageable.

• Encapsulating Code Regions: When using the

QUO approach one must identify and surround

computationally-intensive code regions with calls

476

to QUO_bind_push() and QUO_bind_pop().

Again, in a well-engineered library these modifications

should be trivial—normally such code regions are

well-bound by a function call or within a loop body.

• Determining Threading Levels: Though not brought by

the use of our methodology, determining the minimum

required threading level at MPI_Init_thread()
can be challenging in a dynamic multi-library envi-

ronment. That is, a threaded library may only execute

under certain circumstances that are not necessarily

evident at MPI initialization time, for example, at

runtime requiring a new physics capability. Blindly

initializing with the highest level of thread safety (that

is, MPI_THREAD_MULTIPLE) is wasteful because of

performance degradation brought by higher degrees

of required critical section protection in an MPI li-

brary [15].

At LANL the practicality and utility of our pragmatic

approach has been demonstrated by continuous production

use for over one year: running at scales well in excess

of 200k PEs and servicing demanding scientific workloads

running on a wide variety of HPC platforms.

VI. RELATED WORK

Hybridizing MPI applications has been studied exten-

sively [16], [17], [18], [19]. These works suggest that

choosing between MPI-everywhere and MPI+OpenMP is a

non-trivial task that involves careful consideration regarding,

but not limited to, algorithmic choices in the application

and the characteristics of the target architecture. These

works evaluate MPI+OpenMP schemes that use a static

under-subscription approach, whereas we present a general

methodology to dynamically accommodate a broader set of

Pthread-based MPI+X schemes that consider both data and

hardware localities at runtime.

Dynamic process and memory binding methodologies that

consider application, data, and hardware localities have also

been studied. Broquedis et al. present and evaluate hwloc

by incorporating it into MPI and OpenMP runtimes to

dynamically guide task affinities at runtime [9]. Unlike our

work, however, their work does not present a methodology

to dynamically accommodate thread-level heterogeneity in

coupled Pthread-based MPI+X applications.

For HPC applications there are a variety of published ap-

proaches for efficiently resolving runtime configuration con-

flicts that arise in thread-heterogeneous environments. Car-

ribault et al. present a unified runtime for both distributed-

and shared-memory MPI+X codes [20]. Unlike other MPI

implementations, theirs implements MPI processes as user-

level threads (instead of processes), so their scheduler can

efficiently accommodate both single- and multi-threaded

regions during the execution of an MPI+X application.

In contrast, our approach is MPI implementation agnostic

and exposes an API to programmatically influence task

placement and scheduling at runtime. Huang et al. present

another MPI implementation that uses processor virtualiza-

tion to facilitate application adaptation, including thread-

level heterogeneity [21]. Their approach, however, requires

the use of their runtime and modified versions of others,

for example, GNU OpenMP, whereas ours works with

unmodified MPI and OpenMP runtimes. Other parallel and

distributed programming systems such as Legion [1] and

Charm++ [2] are designed to dynamically resolve runtime

configuration conflicts, but once again require that applica-

tions be rewritten to their respective paradigms.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel approach and implementation

for accommodating thread-level heterogeneity in coupled

MPI applications. Our approach, QUO, enables full uti-

lization of all available compute resources throughout an

application’s entire execution. Its overhead can be modest

and significant performance improvements can be achieved

when used in environments positioned to make effective

use of the additional levels of parallelism our strong-scaling

approach enables. Our performance results show that for a

majority of the 30 tested workloads, using QUO renders

speedups greater than 50%, and the best case speedup was

a resounding 476%.

QUO’s interface is programmable, meaning that it can be

used preferentially in cases where it will improve perfor-

mance and not used otherwise in favor of a conventional

static policy. Better yet, a graded approach could be used

wherein only that subset of libraries that benefit from strong-

scaling are strong-scaled, and to the optimal degree within

the available bounds. This in turn implies that the decision

to actively use QUO, and the strong-scaling factors used

when it is, could be made dynamically, but we have not yet

explored this possibility.

One important aspect of analysis remains, namely the

precise measurement of QUO overhead. The contributions

fall into three groups: QUO’s effects on remappings, QUO’s

effects on libraries with thread scaling factors that do not

change when run with QUO, and QUO’s effects on libraries

with thread scaling factors that are different when run under

QUO. The first two analyses can be done based on data

obtained from our various test cases. The third analysis

requires experimentation that we have not yet performed,

namely strong-scaling the target libraries in the absence of

QUO. This then would allow the overhead of QUO to be

separated from the effects of less than perfect strong scaling

(over which QUO has no influence). This remains work for

the immediate future.

VIII. ACKNOWLEDGMENT

Work supported by the Advanced Simulation and Com-

puting program of the U.S. Department of Energy’s NNSA.

Los Alamos National Laboratory is managed and operated

477

by Los Alamos National Security, LLC (LANS), under con-

tract number DE-AC52-06NA25396 for the Department of

Energys National Nuclear Security Administration (NNSA).

REFERENCES

[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing Locality and Independence with Logical Regions,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012, p. 66.

[2] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent
Object Oriented System Based on C++,” in Proceedings of
OOPSLA’93, A. Paepcke, Ed. ACM Press, September 1993,
pp. 91–108.

[3] Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard Version 3.1,” June 2015. [Online].
Available: http://www.mpi-forum.org/

[4] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, T. Peterka, J. Insley, D. Daniel, P. Fasel et al.,
“The Universe at Extreme Scale: Multi-Petaflop Sky Sim-
ulation on the BG/Q,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012,
p. 4.

[5] A. Canning, J. Shalf, N. Wright, S. Anderson, and M. Gajbe,
“A Hybrid MPI/OpenMP 3D FFT for Plane Wave First-
principles Materials Science Codes,” in Proceedings of
CSC12 Conference, 2012.

[6] J. M. Levesque, R. Sankaran, and R. Grout, “Hybridizing S3D
into an Exascale Application Using OpenACC: An Approach
for Moving to Multi-petaflops and Beyond,” in Proceedings
of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE Computer
Society Press, 2012, pp. 15:1–15:11.

[7] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang,
“Scaling Hypre’s Multigrid Solvers to 100,000 Cores,” in
High-Performance Scientific Computing. Springer, 2012, pp.
261–279.

[8] G. Krawezik, “Performance Comparison of MPI and Three
OpenMP Programming Styles on Shared Memory Multi-
processors,” in Proceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms and Architectures. ACM,
2003, pp. 118–127.

[9] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault, and R. Namyst, “hwloc:
a Generic Framework for Managing Hardware Affinities
in HPC Applications,” in Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th, 2010, pp. 180–186.

[10] B. Goglin, “Managing the Topology of Heterogeneous Cluster
Nodes with Hardware Locality (hwloc),” in International
Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2014, pp. 74–81.

[11] F. Wende, T. Steinke, and A. Reinefeld, “The Impact of
Process Placement and Oversubscription on Application Per-
formance: A Case Study for Exascale Computing,” in Pro-
ceedings of the 3rd International Conference on Exascale
Applications and Software, ser. EASC ’15, 2015, pp. 13–18.

[12] S. K. Gutiérrez, “The QUO Runtime Library,” Jan 2013,
Los Alamos National Laboratory LA-CC-13-076. [Online].
Available: https://github.com/lanl/libquo

[13] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos:
Enabling Manycore Performance Portability Through Poly-
morphic Memory Access Patterns,” Journal of Parallel and
Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014.

[14] A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahren-
berger, D. Roehm, P. Košovan, and C. Holm, “ESPResSo
3.1 — Molecular Dynamics Software for Coarse-Grained
Models,” in Meshfree Methods for Partial Differential Equa-
tions VI, ser. Lecture Notes in Computational Science and
Engineering, M. Griebel and M. A. Schweitzer, Eds., vol. 89.
Springer, 2013, pp. 1–23.

[15] R. Thakur and W. Gropp, “Test Suite for Evaluat-
ing performance of MPI Implementations That Support
MPI THREAD MULTIPLE,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer,
2007, pp. 46–55.

[16] R. Rabenseifner, “Hybrid Parallel Programming: Performance
Problems and Chances,” in Proceedings of the 45th Cray User
Group Conference, Ohio, 2003, pp. 12–16.

[17] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid
MPI/OpenMP Parallel Programming on Clusters of Multi-
Core SMP Nodes,” in Euromicro International Conference
on Parallel, Distributed and Network-based Processing,
2009 17th, 2009, pp. 427–436.

[18] E. Chow and D. Hysom, “Assessing Performance of Hybrid
MPI/OpenMP Programs on SMP Clusters,” LLNL, Tech. Rep.
UCRL-JC-143957, 2001.

[19] N. Drosinos and N. Koziris, “Performance Comparison of
Pure MPI vs Hybrid MPI-OpenMP Parallelization Models
on SMP Clusters,” in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, 2004.

[20] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A Unified
Parallel Runtime for Clusters of NUMA Machines,” in Eu-
ropean Conference on Parallel Processing. Springer, 2008,
pp. 78–88.

[21] C. Huang, O. Lawlor, and L. V. Kale, “Adaptive MPI,” in
International Workshop on Languages and Compilers for
Parallel Computing. Springer, 2003, pp. 306–322.

478

