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ABSTRACT
We present the open-source VOTCA-XTP software for the calculation of the excited-state electronic structure of molecules using many-
body Green’s function theory in the GW approximation with the Bethe–Salpeter equation (BSE). This work provides a summary of
the underlying theory and discusses the details of its implementation based on Gaussian orbitals, including resolution-of-identity tech-
niques and different approaches to the frequency integration of the self-energy or acceleration by offloading compute-intensive matrix
operations using graphics processing units in a hybrid OpenMP/Cuda scheme. A distinctive feature of VOTCA–XTP is the capability
to couple the calculation of electronic excitations to a classical polarizable environment on an atomistic level in a coupled quantum-
and molecular-mechanics (QM/MM) scheme, where a complex morphology can be imported from Molecular Dynamics simulations. The
capabilities and limitations of the GW–BSE implementation are illustrated with two examples. First, we study the dependence of opti-
cally active electron–hole excitations in a series of diketopyrrolopyrrole-based oligomers on molecular-architecture modifications and
the number of repeat units. Second, we use the GW–BSE/MM setup to investigate the effect of polarization on localized and inter-
molecular charge-transfer excited states in morphologies of low-donor content rubrene–fullerene mixtures. These showcases demon-
strate that our implementation currently allows us to treat systems with up to 2500 basis functions on regular shared-memory work-
stations, providing accurate descriptions of quasiparticle and coupled electron–hole excited states of various characters on an equal
footing.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144277., s

J. Chem. Phys. 152, 114103 (2020); doi: 10.1063/1.5144277 152, 114103-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5144277
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5144277
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5144277&domain=pdf&date_stamp=2020-March-16
https://doi.org/10.1063/1.5144277
https://orcid.org/0000-0002-6641-0761
https://orcid.org/0000-0002-9986-8461
https://orcid.org/0000-0003-2410-7411
https://orcid.org/0000-0002-4035-3703
https://orcid.org/0000-0003-0925-1458
https://orcid.org/0000-0003-1227-6429
https://orcid.org/0000-0001-8286-677X
https://orcid.org/0000-0001-9589-2694
https://orcid.org/0000-0002-6077-0467
mailto:B.Baumeier@tue.nl
mailto:https://www.baumeiergroup.com
https://doi.org/10.1063/1.5144277


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

I. INTRODUCTION

The functional role of molecules in either fabricated devices,
such as organic light-emitting diodes,1,2 photovoltaic cells,3,4 and
photodetectors,5 or in naturally occurring mechanisms6,7 is deter-
mined by characteristics of their electronically excited states. In
many cases, the focus lies on dynamical processes, such as the diffu-
sion of a photoexcited state, its conversion into free charges (or vice
versa), or drift-diffusion of carriers. While an adequate description
of such dynamics depends on the specifics of material composi-
tion and/or operating conditions in a device, basic understanding
and control of the processes are often sought via analysis of the
excited-state electronic structure in terms of energy levels or state
diagrams.8 In this context, gaining insight into first-principles calcu-
lations requires methods that reliably predict properties for a variety
of excited states, ranging from single-particle, ionizing excitations to
coupled electron–hole pairs on one or more molecules. Methods also
need to be practical, in the sense that they can be applied to molec-
ular complexes of the size relevant for the aforementioned applica-
tions at a manageable computational cost. Finding the appropriate
balance between computational cost and accuracy plays a crucial role
in analyzing large complex systems.

Post-Hartree–Fock wave function-based approaches, such as
coupled cluster or configuration interaction, can generally be used
to determine excited-state properties with good accuracy.9–12 How-
ever, their large baseline computational cost and rapid scaling with
the system size make the study of large molecular systems practically
impossible in many situations. In contrast, density functional the-
ory13 (DFT) is commonly used to calculate ground-state properties,
while the properties of non-ionizing excitations are formally accessi-
ble by its time-dependent (TD-DFT) extension.14,15 While the com-
putational effort of both techniques is moderate compared to the
wave-function approaches, they rely on the choice of an approximate
exchange-correlation functional. Separate calculations are necessary
to determine reliable ionization energies, and the quality of predic-
tions of different excited states, in particular, of charge-transfer (CT)
character, is sensitive to the functional choice.16–18

Recently, the use of many-body Green’s function theory,15,19–21

typically more rooted in the solid-state community, has received
increasing attention in quantum-chemical applications.22–34 It con-
sists of a two-step procedure in which, at first, the addition and
removal of an electron are calculated within the GW approxi-
mation as quasiparticle (QP) excitations to an N-electron (DFT)
ground state. In the second step, neutral excitations are con-
structed in the same framework as coupled electron–hole pairs
by solving the so-called Bethe–Salpeter Equation (BSE).15,35 Many-
body effects, or electron correlation, are taken into account via a
non-local, energy-dependent electron self-energy operator.36 This
GW–BSE method has been shown to yield excitation energies
with good accuracy for different types of excitations, e.g., localized
(Frenkel) and bimolecular CT excitons,25,26 on an equal footing. The
computational cost of GW–BSE is comparable to linear-response
TD-DFT in the Casida formulation,37 which makes it an attractive
technique for the calculation of the excited-state electronic struc-
ture of complex molecular materials—provided that adequate soft-
ware tools are available. Most common implementations stem from
the solid-state community and use a plane-wave basis with peri-
odic boundary conditions. While it is possible to study molecules by

choosing a large unit cell in such calculations, this is computationally
inefficient.

In this paper, we present an open-source implementation of
GW–BSE in the VOTCA–XTP package38 that expresses the elec-
tronic states using atom-centered Gaussian-type orbitals (GTOs).
VOTCA–XTP is part of the VOTCA software suite,39–41 written in
C++, and freely available on GitHub. It contains an internal mod-
ule for calculating the DFT ground state mostly for developmental
purposes and additionally provides extensible interfaces to standard
packages (Gaussian,42 NWChem,43 and ORCA44). One distinct fea-
ture of the GW–BSE implementation in VOTCA–XTP is that it
comes in two modes. The standalone mode operates like any com-
mon quantum-chemistry software and requires only the atom coor-
dinates of the molecule and calculation parameters as input. In the
second mode, a complex molecular morphology of a solute–solvent
mixture or a donor–acceptor blend is first simulated by Molecular
Dynamics (MD) or similar techniques and then translated as a whole
into an internal data structure. This morphology mode facilitates
the evaluation of the excited-state electronic structure in a complex
environment41,45–48 in a hybrid quantum- and molecular-mechanics
(QM/MM) GW–BSE/MM scheme41 and is linked to a multiscale
framework for the determination of dynamical electronic properties.
Additional features of this framework include the calculation of elec-
tronic49 and excitonic50 intermolecular coupling elements (transfer
integrals), the prediction of ultraviolet photoelectron spectra includ-
ing carrier-vibration coupling,48 the simulation of optical absorp-
tion and emission spectra from coupled solute–solvent relaxation,51

and the determination of charge-carrier mobilities40 and exciton
diffusion lengths52 via kinetic Monte Carlo.

Here, we give a concise overview of the underlying theory and
details of the implementation, including the use of resolution-of-
identity (RI) techniques, different approaches to the frequency inte-
gration of the self-energy, or acceleration by offloading compute-
intensive matrix operations using graphics processing units (GPUs)
in a hybrid OpenMP/Cuda scheme. We highlight VOTCA–XTP’s
capabilities using two showcase applications related to organic
photovoltaics. The first one uses the standalone mode and com-
prises a study of the lowest optically active excitations in a series
of diketopyrrolopyrrole-derived (DPP) oligomers depending on
molecular-architecture modifications and the number of repeat
units. DPP polymers are used as donor materials in bulk hetero-
junctions with a fullerene acceptor.53–55 The polymeric nature of the
material allows a systematic demonstration of the accessible system
sizes and the computational cost involved. At the same time, this
study yields insight into the effects of different approximations on
the excitation energies and the localization behavior of the photoex-
cited electron–hole pair. The second case study uses the morphology
mode to illustrate the importance of accounting for environment
effects on excited states.26 We consider a low-donor content amor-
phous mixture of rubrene and C60 as a realistic model system for
a small-molecule donor–acceptor blend.56 Particular focus lies here
on evaluating the effects of atomistic polarization on single-molecule
localized Frenkel and bimolecular CT excitons in different variants
of the GW–BSE/MM setup.

This paper is organized as follows: In Sec. II, we briefly sum-
marize the essential theoretical aspects underlying GW–BSE, while
technical details of the implementation as well as software develop-
ment strategies are discussed in Sec. III. In Sec. IV, we demonstrate
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the capabilities of VOTCA–XTP in two examples: the size depen-
dence of electronic excitations in the DPP family of polymers and the
stabilization of CT excitations in rubrene–C60 mixtures due to envi-
ronment polarization. Finally, we outline current limitations and
future development directions in Sec. V.

II. THEORY
For the sake of compactness, we restrict the following discus-

sion of the main concepts underlying GW–BSE to a spin-singlet,
closed-shell system of N electrons. Using DFT, the ground state
|N, 0⟩ is determined from the solutions of the Kohn–Sham (KS)
equations,57

ĤKS∣ϕKS
i ⟩ = [Ĥ0 + V̂xc]∣ϕKS

i ⟩ = εKS
i ∣ϕKS

i ⟩. (1)

Here, Ĥ0 = T̂0 + V̂ext + V̂H, with T̂0 being the kinetic energy, V̂ext
being an external potential, V̂H being the Hartree potential, and V̂xc
being the exchange-correlation potential.

Excitations that add (N → N + 1) or remove (N → N − 1)
an electron from the system, referred to as quasiparticles (QPs), are
determined by using the one-particle Green’s function,19,58

G1(r1, t1, r2, t2) = −i⟨N, 0∣T̂ (ψ̂(r1, t1)ψ̂†(r2, t2))∣N, 0⟩, (2)

where T̂ is the time-ordering operator, and ψ̂ and ψ̂† are the anni-
hilation and the creation electron field operators, respectively. This
Green’s function obeys a Dyson-type equation of motion, which
reads in spectral representation as

[Ĥ0 + Σ̂(E)]G1(E) = EG1(E), (3)

where the electron self-energy operator Σ̂(E) contains the exchange-
correlation effects. This equation is part of a closed set of coupled
equations known as Hedin’s equations.35,59 An approximate solution
to this system is provided by the GW approximation, in which the
self-energy takes the form

Σ(r, r′,ω) = i
2π ∫ dω′ G1(r, r′,ω + ω′)W(r, r′,ω), (4)

i.e., it is a convolution of G1 with the screened Coulomb interaction
W = ϵ−1vc, where vc(r, r′) = |r − r′|−1 is the bare Coulomb interac-
tion and ϵ−1(r, r′, ω) is the inverse dielectric function calculated in
the Random-Phase Approximation (RPA).20

Using this approximation, Eq. (3) is converted into a Dyson-
type equation of motion for the quasiparticles (i.e., the QP electron
and hole states),23,60

[Ĥ0 + Σ̂(εQP
i )]∣ϕ

QP
i ⟩ = ε

QP
i ∣ϕ

QP
i ⟩, (5)

where εQP
i are the one-particle excitation energies of the system and

∣ϕQP
i ⟩ are the QP wave functions.

In practice, the QP wave functions are expressed in a basis of KS
states, i.e., ∣ϕQP

i ⟩ = ∑j a
i
j∣ϕKS

j ⟩. With Ĥ0 = ĤKS − V̂xc, diagonalizing
the energy-dependent QP Hamiltonian in this basis as

HQP
ij (E) = ε

KS
i δij + ⟨ϕKS

i ∣Σ̂(E) − V̂xc∣ϕKS
j ⟩ (6)

yields the QP states and energies.
If the off-diagonal elements of Eq. (6) are small, i.e., ∣ϕQP

i ⟩ ≈
∣ϕKS

i ⟩, the quasiparticle energies can be evaluated perturbatively
according to

εQP
i = ε

KS
i + ΔεGWi = εKS

i + ⟨ϕKS
i ∣Σ̂(εQP

i ) − V̂xc∣ϕKS
i ⟩. (7)

Computing εQP
i requires the determination of ΔεGWi , which con-

sequently leads to self-consistently solving Eq. (7). This can be
achieved by first identifying an interval containing a solution on a
grid and then refining this using a bisection (graphical solution).
As an alternative, Newton fixed-point iterations can be performed.
Conventionally, this is referred to as the G0W0 approximation. To
improve upon this one-shot approach, the evGW procedure can be
used instead: QP energies are updated both in the calculation of the
non-local, energy-dependent microscopic dielectric function deter-
mined within the RPA and in the Green’s function until eigenvalue
(ev) self-consistency is reached.

Neutral excitations with a conserved number of electrons and
a change in their configuration S (|N, 0⟩ → |N, S⟩) rely instead
on the two-particle Green’s function.19 This can be obtained from
another Dyson-like equation of motion known as the Bethe–Salpeter
Equation (BSE).35 It determines the four-point density response
function of the interacting system from the non-interacting system
(see Refs. 15, 21, and 41 and references therein for a detailed deriva-
tion). In the specific case of optical excitations, one can employ
a product basis of QP wave functions for coupled electron–hole
amplitudes, i.e.,

χS(re, rh) =
occ

∑
v

unocc

∑
c
∑
σσ′

AS
vc,σσ′ϕc,σ′(re)ϕ∗v,σ(rh)

+BS
vc,σσ′ϕv,σ′(re)ϕ∗c,σ(rh), (8)

where re (rh) is for the electron (hole) coordinate, and we drop the
label QP for clarity. Here, Avc ,σσ ′ (Bvc ,σσ ′ ) are the expansion coeffi-
cients of the excited state wave function in terms of resonant (anti-
resonant) transitions between QP occupied (occ.) states v and unoc-
cupied (unocc.) c with spin σ and σ′, respectively. With this choice
of basis, the BSE can be transformed into an effective two-particle
Hamiltonian problem of the form

(H
res K
−K −Hres)(A

S

BS) = ΩS(A
S

BS). (9)

Assuming that spin–orbit coupling is negligible, this Hamiltonian
has a block structure in terms of the spin combinations.61 It can be
decoupled into singlet and triplet Hamiltonians, allowing us to drop
the explicit spin variables. Then, the matrix elements of Hres and K
are calculated as

Hres
vc,v′c′ = Dvc,v′c′ + κKx

vc,v′c′ + Kd
vc,v′c′ (10)

Kcv,v′c′ = κKx
cv,v′c′ + Kd

cv,v′c′ , (11)

where κ = 2 (0) for spin singlet (triplet) excitations and

Dvc,v′c′ = (εc − εv)δvv′δcc′ , (12)

Kx
vc,v′c′ = ∫ d3re d3rh ϕ

∗

c (re)ϕv(re)vc(re, rh)ϕc′(rh)ϕ∗v′(rh), (13)
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Kd
vc,v′c′ = −∫ d3re d3rh ϕ

∗

c (re)ϕc′(re)W(re, rh,ω = 0)ϕv(rh)ϕ∗v′(rh).
(14)

The exchange interaction Kx originates from the bare interaction vc
and is responsible for the singlet–triplet splitting. The direct interac-
tion Kd contains the attractive, but screened, interaction W between
the electron and hole. This interaction is responsible for the binding
of the electron–hole pair. Furthermore, it is assumed here that the
dynamic properties of W(ω) are negligible and the computationally
less demanding static approximation ω = 0 is sufficient.

In systems for which the elements of the off-diagonal blocks K
in Eq. (9) are negligible, it is legitimate to use the Tamm–Dancoff
Approximation (TDA)62 in which the electron–hole amplitude is
expressed as

χTDA
S (re, rh) =

occ

∑
v

unocc

∑
c

AS
TDA,vcϕc(re)ϕ∗v(rh), (15)

i.e., by resonant transitions from occupied v to unoccupied c states
only. The effective Hamiltonian reduces to the upper diagonal block
of Eq. (9),

HresAS
TDA = ΩTDA

S AS
TDA. (16)

The TDA is known to reduce triplet instabilities.63,64 On the other
hand, the coupling between resonant and anti-resonant parts is sig-
nificant, and its neglect can cause deviations of several 0.1 eV from
results obtained with the full approach,22 in particular, for small
molecules.

III. TECHNICAL DETAILS AND IMPLEMENTATION
A. GW–BSE with Gaussian orbitals

VOTCA–XTP uses Gaussian-type orbitals (GTOs) φα(r)
= φ{ℓ,mℓ ,γ,I}(r) = NℓγYℓmℓ

∣r − RI ∣l exp(−γ∣r − RI ∣2) with decay con-
stant γ centered around atom position RI , where Yℓmℓ

are spherical
harmonics with angular momentum number ℓ and magnetic quan-
tum numbers mℓ, and Nℓγ is a normalization constant to expand the
one- and two-point quantities involved in both DFT and GW–BSE
steps. Specifically, the KS states in Eq. (1) are expressed using these
basis functions in real space as

ϕKS
i (r) =∑

α
ciαφα(r), (17)

turning Eqs. (1), (6), and (9) into (generalized) eigenvalue problems
in matrix form. See also the discussion about efficient solvers for the
BSE in Sec. III E. VOTCA–XTP evaluates the integrals of the respec-
tive operators over the Gaussian basis functions using the modified
recursive algorithms by Obara and Saika65,66 for contracted Gaussian
basis functions with l ≤ 4.

Of particular importance is the computation of 4-center repul-
sion integrals over the GTOs,

(αβ∣α′β′) =∬ d3r d3r′
φα(r)φβ(r)φα′(r′)φβ′(r′)

∣r − r′∣ , (18)

which scales with N4
b (with Nb being the number of basis func-

tions) and occurs in the KS Hamiltonian term V̂H and in the
self-energy. The set of N2

b unique product functions φα(r)φβ(r)

can be approximated by a smaller auxiliary basis containing only
Naux = 3Nb to 5Nb functions ξμ. This reduces the scaling from N4

b to
N3

b by rewriting the 4-center integrals as a combination of 3-center
and 2-center repulsion integrals,67

(αβ∣α′β′) ≈∑
μ,ν
(αβ∣μ)(μ∣ν)−1(ν∣α′β′), (19)

where (μ|ν)−1 is an element of the inverse of the 2-center repulsion
matrix,

(μ∣ν) =∬ d3r d3r′ ξμ(r)
1

∣r − r′∣ ξν(r
′), (20)

and (αβ|μ) is an element of the 3-center repulsion tensor,

(αβ∣μ) =∬ d3r d3r′ φα(r)φβ(r)
1

∣r − r′∣ ξμ(r
′). (21)

The expression in Eq. (19) appears formally as the insertion of a
resolution-of-identity (RI) with metric (ν|μ)−1.

Within the RI approximation, the elements of the QP Hamil-
tonian in the basis of KS states contain Σmn(E) = ⟨ϕKS

m ∣Σ̂(E)∣ϕKS
n ⟩

[Eqs. (6) and (7)], which are determined as

Σmn(E) =∑
μ,ν
∑
l
Iml
μ Inlν

i
2π ∫ dω

eiωθϵ−1
μν (ω)

E + ω − εl ± iη
, (22)

where the factor with θ→ 0+ ensures convergence of the integral and
the imaginary perturbations ±η avoid singularities on the real axis,
where the plus (minus) is taken when l is occupied (unoccupied).
Furthermore,

Iml
μ =∑

ν
(μ∣ν)−1/2∑

α,β
cmα c

l
β(αβ∣ν) =∑

ν
(μ∣ν)−1/2Mml

ν (23)

and

ϵμν(ω) = δμν − 2
occ

∑
m

unocc

∑
l

Iml
μ Iml

ν [
1

ω − (εm − εl) + 2iη

− 1
ω + (εm − εl) − 2iη

] (24)

is called the dielectric matrix. In the G0W0 approach, we take the
KS energies εi = εKS

i , whereas in the evGW approach, we take the
QP energies εi = εQP

i . Currently, VOTCA–XTP pre-calculates all
integrals at the start of the calculation and keeps Iml

μ in memory.

B. Frequency dependence of the self-energy
The frequency integration, in Eq. (4), is one of the major dif-

ficulties in a GW calculation. Although it is possible to perform
a numerical integration, this is likely unstable, since the integrand
needs to be evaluated in regions in which it ill-behaves. VOTCA–
XTP offers different alternatives for an approximate or exact inte-
gration, summarized in the following. We present three methods:
the first one that is exact yet takes too much computational effort,
the second one that is exact and is reduced in scaling, and the third
one that is approximate yet very well-scaled.

In the GW approach, it is customary to separate the self-energy
Σ = iGW into its bare exchange partΣx = iGvc and its correlation part
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Σc = iGW̃, where W̃ = W − vc. In the following, several approaches
to determine the correlation part of Eq. (22) are presented.

1. Fully analytical approach (FAA)
The integral in Eq. (22) can be evaluated analytically, yielding

an exact expression of the correlation part of the self-energy. Its eval-
uation requires the calculation of the reducible polarizability P̂. We
can express it in terms of an eigenvalue decomposition of the RPA
Hamiltonian ĤRPA,

P̂(ω) = [ĤRPA − ω]−1 =∑
S

∣χS⟩⟨χS∣
ΩS − ω

, (25)

where the RPA Hamiltonian obeys a BSE as in Eq. (9) with κ = −1
and Kd = 0 in Eqs. (10) and (11).

We can apply analytic continuation to the complex plane and
contour deformation techniques to the convolution Eq. (4).30,68 The
resulting matrix entries of the correlation part of the self-energy are
given by

Σc,mn(E) = 2∑
l,S

RS
mlR

S
nl

E − εl ± (ΩS − iη) , (26)

where ± denotes + (−) for l occupied (unoccupied) and the factor 2
accounts for spin degeneracy. The residues RS

mn are calculated as

RS
mn =∑

μ,ν

occ

∑
v

unocc

∑
c

Imn
μ Ivcν (AS

vc + BS
vc). (27)

While this approach is analytically exact, it is not feasible for large
systems as the diagonalization of ĤRPA scales as N6 in computational
effort and N4 in memory required.21

2. Contour deformation approach (CDA)
To avoid the computational bottleneck due to the scaling of the

FAA, an alternative approach, also involving analytic continuation
of the integral over the real axis from Eq. (22) to the complex plane
and contour deformation techniques, can be employed. It yields a
different rewriting, containing an integral over the imaginary axis
and residual contributions. Since the new integral is very peaked
around the origin when E ≈ εℓ for some ℓ, we add a Gaussian func-
tion inside the integral and subtract its integral value on the outside.
We then can calculate the matrix entries Σc,mn = Σint

c,mn(E)+Σres
c,mn(E),

with the integral term

Σint
c,mn(E) =

1
π ∑μ,ν,l

Iml
μ Inlν ∫ dω

E − εl
ω2 + (E − εl)2

× [κμν(0)e−α
2ω2

− κμν(iω)], (28)

which can be numerically evaluated using a Gauss–Laguerre quadra-
ture method, and the residual term

Σres
c,mn(E) =∑

μ,ν,l
Iml
μ Inlν [κμν(E − εl ± iη)Θl(E)

−1
2
κμν(0)eα

2
(E−εl)2

sgn(E − εl)erfc(α∣E − εl∣)]. (29)

Here, κ = ϵ−1 − I, and α is a Gaussian scaling parameter adaptive to
the numerical model to be used.69,70 Furthermore, l occupied Θl(E)

is −1 if E < εl and −1/2 if E = εl; for the l unoccupied case, it is 1 if
E > εl and 1/2 if E = εl. By design, the FAA is, in principle, the most
exact one, since it is parameter-free except for the dependence on
the basis set. However, the same results can already be achieved with
the CDA using a moderately sized numerical integration grid for the
Gauss–Laguerre quadrature, which reduces the scaling. This asset,
however, may depend on the implementation, which is currently
under progress for the CDA.

3. Plasmon-pole model (PPM)
Instead of a formally exact treatment of the frequency depen-

dence, it can be approximated within a generalized plasmon-pole
model (PPM).71,72 The dielectric matrix can be expressed in terms
of its eigenvalues λμ′ and eigenvectors Φμ′ as

ϵμν(ω) =∑
μ′

Φμ
μ′(ω) λμ′(ω)Φ

ν
μ′(ω). (30)

In the PPM, eigenvectors are assumed to be frequency-independent,
so only the eigenvalues λμ′ depend on ω. In particular, this approxi-
mate dependence reads

λ−1
μ′ (ω) ≈ 1 +

zμ′ωμ′
2
[ 1
ω − (ωμ′ − iη) −

1
ω + (ωμ′ − iη)]. (31)

Here, zμ′ denotes the plasmon-pole weight and ωμ′ denotes the
plasmon-pole frequency. These two model parameters are found by
fitting the plasmon-pole model to the exact dielectric function,73 as
shown in Eq. (24), for the frequencies ω = 0 and ω = iE0, with E0
being an additional model parameter, typically E0 = 0.5 hartree. The
correlation part of the self-energy results from the second term of
Eq. (31), and its matrix entries are obtained as

Σc,mn(E) = 2∑
l,μ′

1
4
zμ′ωμ′ Iml

μ′ I
nl
μ′

E − εl ± ωμ′
, (32)

where ± denotes + (−) for l occupied (unoccupied) and the factor 2
accounts for spin.

4. Comparison of FAA and PPM for QP excitations
of ethene and adenine

Figure 1 illustrates the influence of the choice of technique for
the frequency integration on the obtained QP corrections to the KS
state energies for two small molecules: ethene and adenine. In both
cases, the calculations have been performed using the aug-cc-pVTZ
basis,74 an optimized RI basis,75 and the PBE076 functional for the
DFT ground-state calculation, with the whole range of states (121 for
ethene and 399 of adenine) included in the RPA and QP steps. The
corrections for all occupied levels and the same number of unoc-
cupied levels are shown. Clearly, the QP corrections obtained with
the PPM are slightly more positive (about 0.3 eV) than those with
the exact method for the occupied and lowest unoccupied levels in
both cases, whereas there is hardly any deviation for unoccupied lev-
els at higher energy. It should be noted that, due to the nature of
the deviations, energy differences near the gap are very similar for
both methods. In particular, the QP gap between highest occupied
molecular orbital (HOMO) and lowest occupied molecular orbital
(LUMO) levels as predicted by the PPM and the exact method dif-
fers by only 0.05 eV for the two molecules considered here. It is also
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FIG. 1. Comparison of the QP corrections εQP − εKS vs the KS energies for ethene
(left) and adenine (right), obtained with the frequency integration of Eq. (4) using
the FAA (triangles) and the PPM (circles), respectively.

visible that the corrections, e.g., to the DFT LUMO level in ethene,
are larger than those for higher unoccupied states, leading to level
switching in GW (LUMO+3). This behavior is the same for the FAA
and PPM. However, this close agreement is paralleled by a significant
difference in computational cost:77 while the use of Eq. (26) increases
the computation time from 4 min to 12 min compared to the PPM
in ethene, we find that for adenine, the same causes an increase from
174 min to 2566 min.

Considering the above, we find that the PPM appears to be
a suitable “low-cost” approximation to the exact frequency depen-
dence of the self-energy when the main interest is in near-gap exci-
tations such as HOMO and LUMO energies or HOMO–LUMO
transitions in larger molecular systems. More significant deviations
can be expected when mixed transitions involving other orbitals
are investigated. We use the PPM for the showcase applications in
Sec. IV.

C. Software development strategies
VOTCA–XTP is written in C++ and mostly adheres to the

C++14 standard.78 It can be obtained on www.github.com/votca/xtp.
We use the Git feature branch workflow combined with code review
and continuous integration, which executes code formatting, static
analyzers, debug and release builds, and the test-suite. We use
CMake as the build system, which also resolves the inclusion of
external dependencies. The linear algebra is handled by Eigen,79

which can be accelerated by internally calling the Intel Math Kernel
Library.80 For serialization, the HDF5 format is used via the canon-
ical libraries.81 Exchange-correlation functionals are provided by
the Library of eXchange-Correlation (LIBXC) functionals.82 Various
boost packages83 are used for file system string operations. Doxygen
is used to document the APIs of VOTCA–XTP and automatically
deploys to http://doc.votca.org.

VOTCA–XTP is designed as a library, which is linked to
very thin executables, which can execute a variety of calculators
by adding keywords on the command line. Virtual interfaces and
factory patterns make the addition of new calculators simple. The
same architecture is used for external DFT and MD codes, making
VOTCA–XTP easily extensible. Lower-level data structures make
use of template metaprogramming to support a variety of data types.

D. GPU acceleration
The computation of the Mml

ν = ∑α,β c
m
α clβ(αβ∣ν) term described

in Eq. (23) requires the convolution of the 3-center repulsion tensor
from Eq. (21) with the molecular orbital coefficients. These con-
volutions involve a large number of matrix–matrix multiplications
that take a significant fraction of the computation time. In VOTCA–
XTP, we have accelerated these operations by offloading them to
a GPU, using the highly optimized CuBLAS library.84 Moreover,
due to the typically limited memory of the GPU and the latency
required to copy the matrices back and forth from the device, there
are limitations to the theoretical speedup for a given system size.

Table I illustrates the time trend for the calculation of 3-center
integrals on a GPU (Nvidia Titan Xp) and single central processing
unit (CPU) thread [Intel(R) Xeon(R) Gold 5120] as the molecu-
lar size increases. For systems smaller than benzene, the accelera-
tion achieved by the GPU does not compensate for much of the
communication latency, and consequently, the reduction in calcu-
lation time is limited, albeit on an already overall low level. For
benzene and naphthalene, we observe a GPU speedup of about 60%
compared to the respective single CPU thread values, while for the
larger systems (phenanthrene and coronene), it increases to 80%.
For even larger systems, the speedup increases until it eventually
plateaus due to limits in the GPU memory and hardware band-
width. Even though the observed quantitative speedups depend on
the given GPU/CPU hardware combination, a qualitatively similar
behavior is expected in a general setting. Note that overall, best per-
formance is obtained by combining all CPU threads and the GPU in
a mixed hybrid OpenMP/Cuda mode, which is also implemented in
VOTCA–XTP.

E. Iterative matrix-free eigensolvers for the BSE
The size of the BSE matrix in Eq. (9) increases rapidly with the

number of occupied (Nocc) and unoccupied (Nunocc) states included
in the product basis, with its dimension being 2NBSE × 2NBSE, where
NBSE = Nocc × Nunocc. Even if the TDA [Eq. (16)] is used, the dimen-
sion of Hres is still NBSE ×NBSE. This leads to a computational as well
as a memory bottleneck for GW–BSE calculations. The Davidson
algorithms85,86 form a family of subspace-iterative diagonalization
schemes that are extensively used in large-scale quantum chem-
istry applications.87,88 These methods allow rapid computation of
a selected number of eigenvalues of large matrices, while reducing
memory requirements when compared to other methods.

TABLE I. Comparison of calculation times for the convolution of the 3-center repul-
sion tensor with the molecular orbital coefficients on CPU [single thread of Intel(R)
Xeon(R) Gold 5120] and GPU (Nvidia Titan Xp), respectively, for four polycyclic aro-
matic hydrocarbons with different numbers of functions in the basis (Nb) and auxiliary
basis (Naux).

Time (s)

Molecule Nb Naux CPU GPU

Benzene 174 774 21 9
Naphthalene 274 1228 68 28
Phenanthrene 374 1682 216 44
Coronene 600 2724 1421 266
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For an eigenproblem HX = ΩX, the Davidson method starts
from a set of N guess eigenvectors V = {v1,v2,⋯,vN}, where
each vi is a column vector. These vectors are used to obtain a small
eigenvalue problem,

(VTHV)x = ωx. (33)

The Ritz eigenpairs of this problem (ωi, yi = Vxi) are approx-
imate solutions of the large eigenvalue problem. The residues of
the Ritz eigenpairs, ri = H yi − ωiyi, are then used to construct
additional basis vectors, ti, which are appended to the projector,
V = {v1,v2,⋯,vN , t1, t2,⋯, tn}. This new projector is then orthog-
onalized, using either a Gram–Schmidt or a QR approach and used
to obtain a better approximation of the large eigenpairs. This is
repeated until the residues of all Ritz eigenpairs follow the condition
∥ri∥ ≤ ϵ, where ϵ is a fixed threshold parameter. When the size of the
projector V becomes too large, it is reset to N Ritz eigenvectors.

In addition to considerably accelerating the diagonalization of
the BSE matrix, these methods do not require the matrix to be stored
in memory and only the action of this matrix on vectors is required.
This matrix-free approach naturally decreases the memory require-
ment of the calculation. Different methods based on the general idea
behind the Davidson algorithm have been developed. These meth-
ods differ in the way the correction vectors ti are calculated and
on which part of the spectrum is targeted. We briefly present the
solutions we have implemented in VOTCA–XTP to solve the BSE
equation using the TDA or the full matrix.

If the TDA is used, the Davidson method allows rapid compu-
tation of the lowest N eigenvalues and eigenvectors of the Hermitian
matrix Hres. The initial projector V is then set to select the N tran-
sitions with the lowest energy difference. We have implemented dif-
ferent methods to compute the correction vectors. Following David-
son’s original idea,85 the correction vectors can be obtained via

ti = −(Dres − ωiI)−1ri, (34)

where Dres is the diagonal of the matrix Hres. Note that (Dres − ωiI)
is a diagonal matrix and that therefore, it is not necessary to explic-
itly diagonalize it. It is important to mention that the method out-
lined above requires only one evaluation of HresV per iteration.
This product can be calculated without having to form the complete
Hres matrix, decreasing the memory requirement at the expense of a
slight increase in computational time.

If the TDA is not used, the lowest transitions correspond to
the interior eigenvalues of the non-Hermitian matrix in Eq. (9), as
all its eigenvalues come in pairs (−ΩS, ΩS). The procedure outlined
above is optimal for exterior eigenvalues but often leads to spurious
eigenvalues when applied to the calculation of interior eigenvalues.
Following Morgan,89 the original Rayleigh–Ritz approach is modi-
fied to map the interior eigenvalues to the exterior of the spectrum
of an inverted matrix. To this end, the small eigenvalue problem
Eq. (33) is replaced by the generalized eigenvalue problem,

(VTHV)x = ω(VTH2V)x. (35)

Solving Eq. (35) gives the harmonic Ritz eigenpairs (ωi, yi = V xi)
with ωi = xTi V

THVxi. As mentioned before, the residues of these
eigenpairs are used to construct correction vectors using Eq. (34),
which are then appended to the projector matrix V . It is worth
noting that the generalized eigenvalue problem Eq. (35) requires
two matrix-vector products per iteration to evaluate HV and
H2V , which significantly increases the computational cost of the
method.

To illustrate the performance of our implementation of the
Davidson algorithm, we show in Table II the computation time
and the memory requirement of the BSE calculations of four nucle-
obases. Here, the Davidson method [Diagonal-Preconditioned-
Residue (DPR)] using Eq. (34) to obtain the correction vectors
and its matrix-free implementation (DPR-MF) are compared to
the highly optimized Lapack routine DSYVEX, which also allows
the calculation of the lowest part of the spectrum. As shown in
Table II, the DPR method is up to 2 orders of magnitude faster than
DSYVEX, while having similar memory requirements. The matrix-
free approach is faster than DSYVEX, but significantly reduces the
memory requirement, hence enabling BSE calculations on much
larger systems. The speed-up offered by the Davidson method over
DSYVEX is most apparent when only a small number of eigenval-
ues are required. For example, in the case of the adenine molecule,
the calculations of the lowest 1000 eigenvalues of the BSE matrix
required approximately the same amount of time using the DPR
or DSYVEX methods, while the DPR-MF was twice as slow. Note
that the full diagonalization of the BSE matrix is not supported by
VOTCA–XTP due to the high computational cost and memory load
that it would require. As a consequence, VOTCA–XTP is not suit-
able for computing the absorption spectrum of large systems far
from the band edge.

TABLE II. Performance benchmark (computation time and memory requirements) of different diagonalization schemes imple-
mented in VOTCA-XTP during the calculation of the 25 lowest singlet excitations of the NBSE × NBSE BSE matrices using the
TDA on a single thread.

Time (s) Memory (GB)

Molecule NBSE DSYVEX DPR DPR-MF DSYVEX DPR DPR-MF

Uracil 7 743 83.44 1.33 32.63 1.08 1.20 0.71
Cytosine 8 149 98.68 1.52 33.16 1.21 1.31 0.79
Thymine 10 593 217.85 2.03 61.99 1.88 2.02 1.16
Adenine 11 725 293.49 2.39 75.48 2.18 2.38 1.28
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F. QM/MM embedding schemes for QP
and electron–hole excitations

As mentioned in Sec. I, VOTCA–XTP provides a coupled
QM/MM framework in which the quantum (excited) state is linked
to a polarizable atomistic model for the environment. Our scheme
makes use of a distributed atomic multipole representation for
molecules in the MM region, which allows treatment of both the
effects of static electric fields and the polarization response as a
self-consistent reaction field. Specifically, static atomic multipole
moments90 Qm

t are employed, where t indicates the multipole rank
and m is the associated atom in the molecule M. The tensor Tmm′

tu
describes the interactions between the multipoles moments Qm

t and
Qm′

u . To model the polarization effects, each atom can be additionally
assigned a polarizability αmm′

tu for the creation of induced moments
ΔQm

t due to the field generated by moments u on a different atom
m′. If we split a classical MM system S in state s into regions R and
R′ with S = R ∪R′, its total energy is given by

E(s)class(S) = E
(s)(R) + E(s)(R′) + E(s)(R,R′), (36)

where

E(s)(R) = 1
2 ∑M∈R

∑
M′∈R
M′≠M

E(s)MM′ +
1
2 ∑M∈R

E(s)M , (37)

E(s)(R,R′) = ∑
M∈R

∑
M′∈R′

E(s)MM′ , (38)

with

E(s)MM′ = ∑
m∈M

∑
m′∈M′

∑
tu
(Qm(s)

t + ΔQm(s)
t )Tmm′

tu (Qm′(s)
u + ΔQm′(s)

u )

(39)

and

E(s)M = ∑
m∈M

∑
m′∈M
m′≠m

∑
tu
ΔQm(s)

t (α−1)mm′
tu(s)ΔQ

m′(s)
u . (40)

Equation (36) follows a variational principle with respect to the
induced moments, and a preconditioned conjugate gradient method
is used to find the ΔQm

t , which give the minimum energy. Induced
interactions are modified using Thole’s damping functions91,92 to
avoid overpolarization. Then, the MM multipoles can interact with
the QM region as an additional external potential to Eq. (1), while
the explicit electrostatic field from the QM density is used to polar-
ize the MM region. In the GW–BSE framework, the density depends
on the state of interest (s). If s is a quasiparticle excitation, we define

ρ(s)QP(r) = ρDFT(r) + fs∣ϕQP
s (r)∣2, (41)

with f s = −1 for occupied and f s = +1 for unoccupied QPs. If s is an
electron–hole excitation, its total density is evaluated as

ρ(s)(r) = ρDFT(r) + ρ(s)e (r) − ρ(s)h (r). (42)

Here, the electron (hole) contribution of the exciton to the density is
computed by integrating the squared excited-state wave function χS
with respect to the hole (electron) coordinates, i.e.,

ρ(s)e (r) = ρ(s)e (re) = ∫ drh∣χS(re, rh)∣2,

ρ(s)h (r) = ρ
(s)
h (rh) = ∫ dre∣χS(re, rh)∣2.

(43)

More specifically, VOTCA–XTP can partition a system into
multiple active QM regions (possibly treated at different levels of
theory) and multiple classical MM regions in which static and
polarizable multipoles of different orders can be defined, general-
izing Eq. (36). In order to evaluate excitation energies within this
QM/MM scheme, a self-consistent procedure is required if polar-
ization is included in the MM region. Within a single iteration step
p, a QM level calculation (DFT for the ground state s = n and DFT
+GW–BSE for electron–hole excited s = x states) is performed in the
electric field generated by the total moments in the MM region. The
resulting QM energy then reads

E(s),pQM = E
(s),p
DFT + δsx Ωp

S. (44)

The associated total electron density is then evaluated on a grid. In
VOTCA–XTP, the default quadrature on a grid used for the numer-
ical integration is an Euler–MacLaurin scheme for the radial com-
ponents and a Lebedev scheme for the angular components, and the
discretized density is then used to self-consistently determine new
induced dipoles in the MM region. The minimized classical energy
E(s),pclass is used to update the total energy of the coupled QM/MM
system,

E(s),pQM/MM = E
(s),p
QM + E(s),pclass . (45)

The whole procedure is repeated until the change in total energy is
lesser than a preselected accuracy, typically 10−5 hartree.

To obtain the excitation energy Ω(s) of a complex in the polar-
izable environment, total energies of the combined QM/MM system
are obtained self-consistently for both the ground and excited state
and their difference is defined as

Ω(s) = E(s)QM/MM − E
(n)
QM/MM. (46)

An equivalent formulation for quasiparticle excitation energies
uses the respective εQP instead of ΩS in Eq. (44).

The above QM/MM procedures rely on the representation of
the molecules in the MM region by static atomic multipoles and
polarizabilities. These can be taken from standard parameterizations
available, for instance, from the AMOEBA force field.93 However,
in many cases, it is necessary to make custom parameterizations.
VOTCA–XTP can either read fitted partial charges from one of the
supported external DFT packages or obtain them with its internal
CHELPG94 module. Higher order static multipoles can be taken
from the Gaussian Distributed Multipole Analysis (GDMA) soft-
ware.95 VOTCA–XTP also provides a tool for the optimization of
atomic polarizabilities after the static moments are defined. Starting
from generic element-specific polarizabilities from AMOEBA, these
are scaled atom-specific to reproduce the polarizable volume of the
molecule as obtained from DFT.

IV. SHOWCASE APPLICATIONS
In this section, we demonstrate the application of VOTCA–

XTP in two showcases related to materials used in organic pho-
tovoltaics. First, we investigate the optical excitation energies in a
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FIG. 2. Chemical structure of a monomer (n = 1) building block of the n-DPP2PymT
oligomers with m = 1, 2, 3.

series of diketopyrrolopyrrole-derived oligomers. Second, we study
the effects of donor–acceptor complex conformations and environ-
ment polarization on the CT excitations in a low-donor content
blend of rubrene and fullerene.

A. Optical excitations of diketopyrrolopyrrole-derived
oligomers

As a first showcase application, we investigate the excited-state
properties of a series of diketopyrrolopyrrole (DPP) oligomers as
model systems for the respective polymers. The chemical structure
of the monomer building blocks is shown in Fig. 2. We consider
structural variants containing m = 1, 2, 3 thiophene rings (in trans
orientation) in the monomer unit, as well as oligomers consisting
of up to n = 4 repeat units, further referred to as n-DPP2PymT.
This choice not only allows us to study the physical system but
also enables us to simultaneously highlight the systematic increase
in size of the computational system and the associated powers and
limitations of the current implementation. In its ground state, the

DPP core is highly electron-withdrawing. Hence, nucleophilic aro-
matic substituents are added to the DPP core.53 In the compounds
studied, pyridine is used as an aromatic substituent, which low-
ers the highest occupied molecular orbital (HOMO) and the lowest
occupied molecular orbital (LUMO) levels due to the presence of
sp2-hybridized nitrogen.54 Further addition of thiophene (a stronger
nucleophile) increases the number of aromatic substituents in con-
jugation with DPP. The donor strength increases consequently as
evident from the HOMO energy levels determined by cyclic voltam-
metry measurements.55 This addition of thiophene also minimally
influences the LUMO, and the optical excitation energy is lowered
from 2.22 eV for m = 1 to 2.05 eV for m = 3.55

Geometry optimizations for the n-DPP2PymT oligomers have
been carried out within DFT based on the cc-pVTZ basis set75

with the PBE0 hybrid functional76 using the ORCA package.44 Ini-
tial structures for all oligomers have been prepared as suggested by
experiments with the thiophenes in trans orientation to each other,
and the final obtained geometries are nearly planar.

For the subsequent GW–BSE calculations, we chose the evGW
approach with the PPM. An optimized auxiliary basis set for
cc-pVTZ74 taken from the Basis Set Exchange96 has been used in
the resolution-of-identity steps. Aiming at a consistent benchmark,
we use in each case the full spectrum of single-particle states in the
RPA (NRPA) and determine QP corrections to all occupied (Nocc)
and Nunocc = 2Nocc unoccupied states. The latter are also taken into
account in the product basis for the BSE, i.e., NBSE = Nocc ⋅Nunocc.
The explicit values as listed in Table III for all oligomers. Due
to computational limitations, only systems with n = 1, 2, 3 could
be treated for n-DPP2Py3T. The HOMO and LUMO energies as

TABLE III. Number of RPA levels (NRPA), number of occupied (Nocc) and unoccupied levels (Nunocc = 2Nocc), the product basis set size for BSE calculations (NBSE), Kohn–Sham
HOMO (εKS

HOMO) and LUMO (εKS
LUMO) energies, quasi-particle HOMO (εQP

HOMO) and LUMO (εQP
LUMO) energies, and optical excitation energies for TDA (ΩTDA

opt ) and full BSE (Ωfull
opt) for

the n-DPP2PymT oligomers. All energies are given in eV.

NRPA Nocc Nunocc NBSE εKS
HOMO εKS

LUMO εQP
HOMO εQP

LUMO ΩTDA
opt Ωfull

opt

1-DPP2Py1T 982 96 191 18 336 −5.73 −2.93 −6.76 −1.31 2.79 2.44
2-DPP2Py1T 1935 191 381 72 771 −5.66 −3.19 −6.57 −1.73 2.45 2.22
3-DPP2Py1Ta 2890 286 571 163 306 −5.65 −3.30 −6.52 −1.90 2.31 2.11
4-DPP2Py1Ta 3844 381 761 289 941 −5.64 −3.36 −6.50 −1.97 2.25 2.06

Expt.b −6.05 −3.83 1.81

1-DPP2Py2T 1164 117 233 27 261 −5.64 −2.95 −6.65 −1.39 2.68 2.38
2-DPP2Py2T 2300 233 465 108 345 −5.55 −3.15 −6.42 −1.73 2.35 2.15
3-DPP2Py2Ta 3436 349 697 243 253 −5.53 −3.23 −6.38 −1.84 2.25 2.07
4-DPP2Py2Tc 4572 465 929 431 985 −5.53 −3.26 −6.36 −1.90 2.19 2.03

Expt.b −5.96 −3.80 1.73

1-DPP2Py3T 1346 138 275 37 950 −5.55 −2.96 −6.53 −1.45 2.60 2.34
2-DPP2Py3T 2664 275 549 150 975 −5.46 −3.11 −6.32 −1.72 2.29 2.11
3-DPP2Py3Ta 3982 412 823 339 076 −5.45 −3.17 −6.28 −1.81 2.20 2.05

Expt.b −5.77 −3.72 1.74

aNeeds more than 256 GB RAM.
bFrom Ref. 55. Measurements of HOMO/LUMO performed with cyclic voltammetry of thin films, absorption data from dilute solution in chloroform. In both cases, polymers with
different bulky, branched alkyl side chains are used.
cNeeds more than 512 GB RAM.
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obtained in the KS and QP approaches and the optical excitation
energies resulting from the TDA and the full BSE are also given in
Table III.

The quasi-particle energies for HOMO and LUMO follow the
expected trend with the increasing number of thiophene units m, as
discussed above. We observe that for all oligomers, increasing the
number of repeat units n initially, i.e., from monomer to dimer,
affects the HOMO energies by about 0.2 eV. Upon further addi-
tions of repeat units, the values tend to saturate, indicating that the
electronic excitations remain localized. Table III also includes exper-
imental values for the HOMO and LUMO levels of polymers of
the three respective structures, as determined by cyclic voltammetry
measurements in thin films.55 The GW calculated and experimen-
tally observed εQP values are found to demonstrate the same behav-
ior as the experiment with the increasing number of thiophenes.
Quantitative differences can be attributed to the lack of environment
effects in the vacuum calculations.48

A similar trend is apparent for the energy of the optically active
singlet excitations, as shown in Fig. 3, for calculations based on the
full BSE (solid lines) and using the TDA (dashed lines), respec-
tively. The values for Ωfull

opt obtained for the largest systems are close
to those obtained in solution55 (1.81 eV for DPP2Py1T, 1.73 eV
in DPP2Py2T, and 1.74 eV in DPP2Py3T). It is also noteworthy
that even for the biggest oligomers, the difference between the TDA
and the full BSE is about 0.2 eV. This is a further indication of the
fact that the electronic states and excitations do not delocalize com-
pletely over the whole oligomer but remain localized on a few repeat
units.26

This notion is corroborated by the visualizations of the elec-
tron density difference upon excitation, as shown by insets in Fig. 3.
Although the DPP bicyclic core is electron withdrawing, upon exci-
ton generation, the electron density is reduced there. In the case
of 1-DPP2Py1T, the change in electronic density is visible over the
entire small molecule. In contrast, for 4-DPP2Py1T, we note that

FIG. 3. Excitation energy Ω (in eV) for the DPP2PymT oligomers as a function of
the number of repeat units. The solid lines represent the energies obtained using
the full BSE, while the respective dashed ones result from the TDA. The increased
electron density and increased hole density (isovalue ±2 ⋅ 10−4 e/a3

B) are shown
in blue and red, respectively, after exciton formation. The molecules shown are
4-DPP2PyT (top) and 1-DPP2PyT (bottom).

the termini of the oligomer are nearly free of either hole or electron
density, with the excitation appearing to be localized on about three
repeat units.

Turning now toward the computational effort required to
obtain these results, we first observe that, as also noted in Table III,
systems with up to roughly Nb = 2500 basis functions (the same
as NRPA) can be treated on machines with less than 256 GB of
memory. More than 512 GB are needed for the biggest oligomer
(4-DPP2Py2T). These requirements can be considered typical for
most organic compounds with similar composition and arise
from the aforementioned storage of the three-center integrals Iml

μ
[Eq. (23)] in memory (see Sec. III A) containing (Nocc + Nunocc)
⋅NRPA ⋅Naux doubles. It should be emphasized that this apparent
limitation of the system sizes accessible on regular workstations can
be overcome by choosing a lower NRPA, fewer states in the QP and
BSE steps, or a smaller basis set than the large cc-pVTZ set used here
for demonstration purposes.41 We also stress that the peak memory
required is reached in the RPA of the GW step, and obtaining the
solution of the BSE does not increase it as we make use of the matrix-
free Davidson (DPR-MF) method, as introduced in Sec. III E.

B. Molecular and charge-transfer excitations in
rubrene–fullerene mixtures

The second application example showcases VOTCA–XTP’s
capability to determine the different excited states of molecular
complexes within the GW–BSE/MM embedding schemes. Here,
we focus on representative structures of a donor–acceptor hetero-
junction as used in organic photovoltaics. In particular, we study
an amorphous morphology with low-donor content (<10 mol. %),
composed of fullerene (C60) and 5,6,11,12-tetraphenyltetracene
(rubrene). Because of the low-donor content, aC60 cluster will sur-
round the donor molecule, making the interaction between the sin-
gle donor molecule and a close shell of neighboring C60 acceptors
representative of the properties of the system as a whole. These
complexes are therefore meaningful candidates for a computational
analysis of the influence of donor–acceptor conformations and
environment polarization effects in the GW–BSE/MM framework
introduced in Sec. III F.

To obtain representative structures, mixed morphologies have
been simulated with ab initio MD based on density functional tight
binding theory using linear scaling self consistent field calculations
within the CP2K code.97 Initial configurations have been prepared
using packmol,98 targeting experimental values56 for densities and
mole percentages. This structure is first equilibrated at 700 K in NpT
(with velocity rescaling thermostat99 at atmospheric pressure100) for
7 ps (time step 1 fs) and then annealed to 300 K within 10 ps. A final
NpT equilibration followed for 5 ps.

In the final morphology, donor–acceptor complexes with many
different orientations between fullerene and rubrene molecules are
present, and we focus here on the two cases shown in Fig. 4. The
first configuration, labeled CTP, displays a center-of-mass distance
of ΔCOM = 11.3 Å between the two molecules, and their closest
contact distance ΔCC = 3.3 Å is found between a carbon atom in
C60 and a hydrogen atom of one phenyl group in rubrene. On
the other hand in the CTA configuration, the two molecules are
closer (ΔCOM = 8.9 Å) and ΔCC = 1.8 Å is found with respect to
an atom in the anthracene core of rubrene. Such variations of the
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FIG. 4. View of the two rubrene–C60 configurations taken from the MD simulation.
The QM complexes are surrounded by the MM atomic sites, here pictured as small
spheres. In (a), the C60 is closer to one of the phenyl ring of rubrene, and this
complex is referred to as CTP. In the CTA configuration (b), the fullerene is close
to the anthracene core.

mutual orientations of rubrene and C60 in the two complexes are
also expected to give rise to distinctly different characteristics of elec-
tronic excitations, intermolecular charge-transfer excitations above
all.

For both configurations, we apply the GW–BSE/MM method
described in Sec. III F. To keep the computational costs tractable,
the calculations make use of effective core potentials and an associ-
ated basis set101 that has been augmented by a single shell of polar-
ization functions taken from the 6-311G∗∗ basis.102 An associated
auxiliary basis was constructed using the technique employed in
the Symmetry-Adapted Perturbation Theory (SAPT) code.103 The
PBE076 functional has been used for the underlying DFT ground-
state calculations. In the GW–BSE steps, a total of NRPA = 2366
levels have been included in the RPA, and QP corrections have been
determined for Nocc = 218 occupied and Nunocc = 435 unoccupied
states. The corresponding product basis for the BSE in TDA is of
size NBSE = 94 830. In the following, we determine the electron–
hole excitations of the complexes in three embedding variants: in
the gas-phase (vacuum, GW–BSE), in a static environment in which
no polarization effects are included in the MM region within a cut-
off of 2.2 nm (GW–BSE/MMs), and in a polarizable environment
(GW–BSE/MMp), respectively.

The resulting excitation energies are shown in Fig. 5. In all
cases, local excitations on C60 (rubrene) are marked in green (blue)
and excitations with CT character are given by varying shades of
red depending on the amount of charge transfer ΔQ. Note that
in the case of GW–BSE/MM and GW–BSE/MMs, one obtains the

full spectrum of excitations from a single calculation. Due to the
state-dependent response of the system in the polarizable
case—requiring the self-consistent procedure as described in
Sec. III F—only the lowest energy excitations with the respective
characters are shown for GW–BSE/MMp.

For both configurations, the spectra are hardly affected by the
embedding in a static environment. This is due to the fact that most
of the environment of the complexes is formed by C60 molecules,
which only exhibit a faint electrostatic potential.

For the CTP configuration [Fig. 5(a)], the lowest 15 excita-
tions, as obtained by GW–BSE/MMs, are localized on C60, with the
optically active rubrene excitation found right above them at about
2.4 eV. Charge-transfer excitations (with ΔQ = 1, see also the iso-
surface plot in the inset) result another 0.2 eV higher in energy.
Polarization as taken into account in the GW–BSE/MMp calcula-
tions has very little effect on the two localized excitations since both
C60 and rubrene exhibit only a small change in molecular dipole
moment upon excitation. In contrast, the creation of a CT exciton
causes a large change in dipole moment to which the environment
strongly responds. The electron–hole pair is also less strongly bound
in the CT exciton and, therefore, itself more susceptible to changes
in the environment. In total, this results in a strong energetic stabi-
lization around 0.46 eV so that the CT state energy is found 0.24 eV
below the rubrene excitation. This is qualitatively different to the
situation observed without the inclusion of polarization effects, indi-
cating that the formation of the CT state could be exothermic rather
than endothermic.

The spectra of the CTA are significantly different. In a vacuum
or static environment, the three lowest excitations between 1.6 eV
and 1.8 eV show partial charge transfer (ΔQ = 0.38) due to a delo-
calization of the single-particle HOMO level over both molecules.
Between 2.0 eV and 2.4 eV, the spectra are generally dense with exci-
tations of different character being energetically close. The localized
excitations result at very similar energies as in CTP in the GW–
BSE/MMp calculation. Similarly, also the energy of the CT excitation
is only lowered by 0.03 eV, which we attribute to a combination of
smaller dipole moment and lower polarizability of the excited state
as compared to the one in CTP. It is noteworthy, however, that the
amount of charge transferred is increased to ΔQ = 0.68. The non-
integer type of CT can also be seen from the isosurface plot in the
inset of Fig. 5(b) in which part of the hole density (red) is present
on C60. Conversion to CT excitations appears energetically favorable
from both types of localized excitations in CTA.

FIG. 5. Excitation energies Ω (in eV) as obtained for the CTP (a) and CTA (b) complexes from the GW–BSE calculations in vacuum and embedded in a static (GW–BSE/MMs)
and polarizable (GW–BSE/MMp) environment, respectively. Local excitations on C60 (rubrene) are marked in green (blue) and excitations with CT character are given by
varying shades of red depending on the amount of charge transfer ΔQ. Isosurfaces of the electron–hole densities with isovalue ±10−4 e/a3

B are shown as insets.
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V. DISCUSSION

The two examples discussed in Sec. IV emphatically demon-
strated the capabilities of VOTCA–XTP in calculating the excited-
state electronic structure of molecular materials based on GW–BSE
both in isolated molecular systems and in complex molecular aggre-
gates. Our implementation is particularly suited for the study of
near-gap excitations and performs well on regular workstations.
There are, however, as briefly already discussed, some limitations,
e.g., in terms of accessible system sizes, or ultimate accuracy depend-
ing on the method used for the frequency integration of the self
energy.

All in all, the design of VOTCA–XTP aims at striking a balance
between performance, accuracy, and implementation complexity.
For instance, the RI approximation simplifies the implementation
and speeds up the calculations. In particular, the N3

b scaling of the
memory requirements of the RPA makes the storage of the three-
center integrals in memory feasible for moderate-sized molecules
described by up to approximately 1500 basis functions, thus allowing
GW–BSE calculations even on desktop hardware. As VOTCA–XTP
is built with shared memory parallelization, large memory hard-
ware is required for the treatment of larger systems. This could, in
principle, be overcome either by calculating the necessary terms on
the fly or by efficiently storing them on a disk. Both would come
with a notable drop in performance and are currently not actively
pursued. Instead, we consider as an alternative the inclusion of a
framework for Density Functional Perturbation Theory104 (DFPT)
into VOTCA–XTP. It has been shown before105 that the explicit
summation over unoccupied states in the RPA can be omitted, if the
whole GW is rephrased in terms of a Sternheimer equation. In the
same spirit, DFPT can also yield beneficial improvements in terms
of speed and memory consumption for the BSE.106

Besides the above limitations, the GW–BSE implementation in
VOTCA–XTP currently supports only closed-shell calculations, and
thus, systems with explicit spin, e.g., for the optical spectra of cations
or anions, cannot be treated. This restriction is planned to be lifted
in future versions. Furthermore, VOTCA–XTP can only determine
excited-state response properties such as atomic forces, excited-state
vibrational modes, or polarization tensors via numerical derivatives
due to the lack of analytic gradient expressions.107 It is also known
that while the GTO-based implementation is adequate for the repre-
sentation of bound electronic states, it is less effective in describing
delocalized electronic states close to or above the vacuum level. As a
consequence, Rydberg excitations are not as reliably accounted for.
Such states typically require the addition of very diffuse atomic basis
functions, causing significant linear dependencies in the molecular
basis set, which require careful treatment.108

In the GW–BSE/MM framework, classical polarization effects
of the environment are currently modeled via atomic induced
dipoles as described in Sec. III F. This model cannot be expected to
yield an accurate description of the response, if the environment is
strongly polarizable to the extent that charge flow effects are present.
Furthermore, our GW–BSE/MM framework relies on the assump-
tion that the environment response is single-reference in character,
allowing for an unambiguous identification of the excited states in
the self-consistent procedure required to evaluate Eq. (44). This can
be achieved by analyzing excited-state characteristics, such as oscil-
lator strengths for optical transitions or the amount of transferred

charge between two molecules, or directly the density matrix of the
excitation. Any of these state-tracking methods are not straightfor-
wardly applicable, e.g., at or close to intersections where at least
two states mix strongly. The inclusion of automatic solutions to this
problem109,110 is left for future developments.
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