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Plasma flows encountered in high-energy-density experiments display features that differ from those of
equilibrium systems. Nonequilibrium approaches such as kinetic theory (KT) capture many, if not all, of these
phenomena. However, KT requires closure information, which can be computed from microscale simulations
and communicated to KT. We present a concurrent heterogeneous multiscale approach that couples molecular
dynamics (MD) with KT in the limit of near-equilibrium flows. To reduce the cost of gathering information from
MD, we use active learning to train neural networks on MD data obtained by randomly sampling a small subset
of the parameter space. We apply this method to a plasma interfacial mixing problem relevant to warm dense
matter, showing considerable computational gains when compared with the full kinetic-MD approach. We find
that our approach enables the probing of Coulomb coupling physics across a broad range of temperatures and
densities that are inaccessible with current theoretical models.
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I. INTRODUCTION

In plasma modeling, a number of dynamical and struc-
tural data need to be collected at microscopic scales using
quantum molecular dynamics simulations [1–3], for example.
Experimental results and their analysis, on the other hand,
are determined by measurements at the macroscopic scale in
space over long scales in time [4,5]. Therefore, one major
disparity that is currently inhibiting progress in this area is
the extrapolation of microscale information into macroscop-
ically relevant scales. Inertial confinement fusion implosions
[6–8], for example, are fundamentally multiscale in nature; an
accurate understanding of the connection between experimen-
tal observables and the underlying microphysics is needed.
Large-scale properties of these systems [9–12] are crucially
affected by microscale information such as equations of state,
and ionic and electronic transport coefficients. This micro-
scopic information is often incorporated in hydrodynamic
codes [13] through theoretical models rather than the more
reliable atomistic simulations; however, molecular dynamics
(MD) [14] simulations cannot reach engineering scales. For
these reasons, a large number of multiscale techniques have
been developed to enable scale bridging between MD simula-
tions and meso- and macroscale models.

In most multiscale methods, a well-defined set of equations
at the macroscale is assumed, and the appropriate closure
information is then computed by a finer-scale model and
communicated to the macroscale. These approaches perform
well for relatively simple systems [15], but performing MD
simulations at every time step for each of the macroscale grid
cells can quickly become impractical without some sort of
guidance [16,17].

*diaw@lanl.gov

We present here an approach to enhancing the performance
of multiscale modeling by using active learning (AL) [18,19]
to iteratively build surrogate models of the fine-scale response.
Specifically, a machine learning model is trained on data
from fine-scale simulations and responds quickly to queries
from the coarse-scale simulation. If the machine learning
model believes that it cannot accurately respond to a given
query, then new fine-scale simulations are spawned and their
results added to the training dataset. We use a the “query-
by-committee” algorithm [20] to decide when to obtain new
data. We employ an ensemble of neural networks to model the
fine-scale data. Ensemble averaging over multiple models is
a useful variance reduction technique. More importantly, the
ensemble variance is a metric for uncertainty of the machine
learning prediction. New fine-scale simulations are launched
whenever this uncertainty metric (ensemble variance) exceeds
a threshold.

We demonstrate this multiscale coupling method through
investigation of materials mixing in hot dense plasma. This
problem is relevant to the Marble experimental campaign
[21–23] which attempts to quantify the effects of the mix-
ing on Inertial Confinement Fusion [24]. In this experiment,
target capsules are filled with a deuterated foam with en-
gineered pores of a specified diameter. The pores are filled
with a gas containing tritium. In our case, we are solving
the multi-ionic Vlasov-Bhatnagar-Gross-Krook kinetic equa-
tion [25,26], which we evolve using a standard second-order
finite-volume scheme with the monotonized central difference
limiter [26]. The electrons are assumed to be in thermal
equilibrium and treated as a fluid characterized by its density
ne and Te. The communication and interfaces between the
computing platform, surrogate modeler, coarse-scale code,
and fine-scale code is handled by the Generic Learning User
Enablement (GLUE) code.
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This paper is organized as follows. Section II A describes
our multiscale method that couples molecular dynamics to
kinetic theory (KT) models and discusses how the missing
information in KT is obtained from MD simulations. In
Sec. II B we introduce the active learning algorithms, and in
Sec. II C we present the features of the GLUE code, which
handles the communication between the fine-scale model,
coarse-scale model, and the surrogate model. A demonstration
application of this framework to atomistic mixing in hot
dense plasma follows in Sec. III. Finally, in Sec. IV, we give
some brief conclusions and discuss ongoing extensions of this
framework.

II. COUPLING SCHEME

In this section, we describe the components of the multi-
scale framework. First, we present the fine- and coarse-scale
models and provide some details on how they are connected.
Next, we give the details of the active learning surrogate
model. Finally, we discuss some of the computer science
infrastructure required to interface these components together.

A. Heterogenous multiscale method for plasma

We consider two levels of approximation in this work:
Molecular dynamics is the most accurate and taken to be our
ground truth, while KT is a compromise in terms of speed
and accuracy of the physics with respect to MD. Below, we
briefly describe the two models and specify the information
that needs to be passed between the two scales.

We begin with the Hamiltonian formulation of classical
mechanics to describe a plasma mixture of Nν species. Each
species i has Ni particles for a total of N = ∑Nν

i=1 Ni particles.
The Hamiltonian of this system is

H = 1

2

N∑
α=1

⎡
⎣mαuα · uα +

N∑
β=1,β �=α

φαβ (|rα − rβ |)
⎤
⎦, (1)

where mα , uα , and rα are the mass, velocity, and position of
particle α, respectively, and φαβ (r) is the two-body interaction
potential appropriate to the species of particles indexed by α

and β. The dynamics is governed by Hamilton’s equations:

ṙα = 1

mα

∇uα
H = uα, (2)

u̇α = − 1

mα

∇rα
H = − 1

mα

∇rα

∑
β

φαβ. (3)

One typically solves these equations using a symplectic inte-
gration scheme that exactly conserves an approximate energy
function, thereby yielding good global accuracy. Statistics
collected from MD can in principle provide numerical vali-
dation of any classical theory. Periodic boundary conditions
were used to best approximate the large system size limit.
In this work, MD simulations were carried out with the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) code [27]. Ions interactions φαβ were modeled
with a screened-Coulomb potential [9],

φαβ (r) = Z∗
αZ∗

βe2

r
exp(−r/λ), (4)

where Z∗
α and Z∗

β are the ionization charges of ions α and β,
e is the elementary charge, and λ is the electronic screening
length given by

λ−2 = 4πe2ne√
T 2 + (

2
3 EF

)2
. (5)

Here the electron density is estimated using ne = 〈Z∗〉n, with
Z∗ the average charge of the ions and n the ionic total
density, and EF is the Fermi energy. The mean ionization
charge state Z∗ of the different species are estimated using the
Thomas-Fermi model [28]. This potential has been shown to
give qualitatively good results for the warm dense conditions
considered in this work [29,30]. However, for nondegenerate
electrons, the electron-ion interaction needs accommodation
of quantum effects. Since the pioneering work of Hansen and
McDonald [31], quantum statistical potential (QSP) has been
a popular approach to accounting for electron-ion quantum
degeneracy effects [32,33]. Dutta and Dufty [34] compared
modified-Kelgb potential [35] against the gold standard of
path-integral quantum Monte Carlo (PIMC) [36,37]; showing
an extremely wide range of physical conditions where QSPs
are nearly perfect, it is only at very low densities that we
can see a modest deviation. Further improvements of the
electron-ion interactions are under way using effective ion
potential from the average atom model of Refs. [38,39]. It
combines an average atom model based on density-functional
theory to calculate the electronic structure of the plasma with
the integral equations of fluid theory for the ion interactions,
enabling an efficient computation of the plasma properties.

Our starting point for coupling MD with KT (and, in the fu-
ture, hydrodynamics) is through transport coefficients, in this
case the mutual diffusion coefficients. Transport processes
are the manifestation of nonequilibrium effects occurring at
microscopic scale. Using the fluctuation-dissipation theorem,
Green and Kubo [40,41] have shown that these nonequilib-
rium effects are embedded in equilibrium correlation func-
tions [42], thus providing a way to estimating transport co-
efficients through the correlation functions of equilibrium
molecular dynamics simulations.

The Green-Kubo formula uses the velocity autocorrelation
function to determine the self-diffusion coefficient of species
i,

Di = 1

3

∫ ∞

0
dt〈uα (t − t0) · uα (t0)〉{α,t0}. (6)

The angular brackets represent an average over all Ns particles
(indexed by α) of species i and over all statistically equivalent
initial times t0. The net momentum of the box is taken to be
zero.

For mixtures, the mutual diffusion Di, j between species
i and j can be expressed compactly if one neglects cross-
correlation between particles. Under this assumption, the
Darken relation is [43]

Di, j = DiDj

Nk∑
k=1

xk

Dk
, (7)

where xi is the density fraction of species i. The Darken
relation has been demonstrated to give accurate results of
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interdiffusion for mixtures across coupling regimes as shown
in Refs. [43–45].

In the multiscale coupling scheme, the coarse-scale model
will require measurements of the diffusion Di and mutual dif-
fusion Di j coefficients at specific temperature T and species
fractions xi. The required steps for the MD simulation are as
follows: (1) Estimate the mean-free paths of all species; (2) set
the simulation domain to four times the largest species mean
free path, which is sufficiently large to avoid Knudsen finite-
size effects [46–48]; (3) randomly populate the simulation
domain with particles according to the target species densities;
(4) perform an initial MD simulation with a Nosé-Hoover
thermostat enabled to equilibrate the positions and velocities
according to the Boltzmann distribution at fixed temperature
for 5 × 104 time steps (we choose a time step of 10−2/ωp,
where ωp is the ionic plasma frequency, to maintain constant
total energy over the simulation duration); (5) perform an
MD simulation in the microcanonical ensemble to determine
trajectories and generate velocity fluctuations for 105 time
steps; and (6) use Eqs. (6) and (7) to compute the mutual
diffusion coefficients. The MD results are then stored in an
SQLite database.

Our coarse-scale model is a multicomponent Bhatnagar-
Gross-Krook (BGK) [25,49] model which was derived by
approximating the collision operator in the Boltzmann equa-
tions with a relaxation-time form assuming a near equilibrium
approximation. The ion dynamics is described by the BGK
equation, which can be expressed as

∂ fi

∂t
+ v · ∇ fi + Zie

mi
E · ∇ fi =

∑
j

QBGK
i j [ fi, f j], (8)

where fi(r, v, t ) is the distribution function of species i ions
and E is the electric field which satisfies Gauss’s law,

− 1

4πe
∇ · E = ne(r, t ) −

∑
i=1

Zi

∫
dv fi(r, v, t ), (9)

where ne is the electron density. Electrons are treated as a
background fluid with a density ne and a temperature Te,
within the finite-temperature Thomas-Fermi model [28]. Fi-
nally, the BGK operator is given by:

QBGK
i j [ fi, f j] = νi j (Mi j[ fi, f j] − fi ), (10)

where νi j correspond to the average collision frequencies for
a single i particle with the j particles and Mi j are target
distribution functions,

Mi j[ fi, f j]=ni

(
mi

2πk jTi j

)3/2

exp

[
− mi(v − uij)2

2k jTi j

]
, (11)

which are constructed to satisfy particle number, momentum,
and energy conservation, as well as Boltzmann’s H-theorem.
Expressions of the parameters, ui j , Ti j can be found in
Ref. [26].

The KT model requires closure information in terms of the
collision frequencies νi j . While there is some freedom in how
these parameters are defined, typically they are constructed
such that they give the Boltzmann diffusion coefficients in
the hydrodynamic limit [49–51]. For a binary mixture, this

formula is simply

νi j = kBT

μi jDi j
, (12)

where T = (miTi + mjTj )/(mi + mj ) is the average tempera-
ture, μi j the reduced mass between species i and j, and Di j

is the mutual diffusion between species i and j. Molecular
dynamics simulations [30,44,52–54] are accepted as ground
truth for microphysical properties such as interdiffusion in
high-energy density plasmas. Our goal here is to gather these
values from small MD simulations so that the KT equa-
tions can be closed with MD-accurate coefficients. Both the
BGK and (eventually) hydrodynamic models assume that the
system is near a local thermodynamic equilibrium, so we
can exploit timescale separation and use an MD simulation
embedded in the macroscopic cell with periodic boundary
conditions to compute local transport properties.

B. ML surrogate model: Ensemble of deep neural networks

Collecting molecular dynamics information for each cell
in our coarse-scale models is very expensive. To reduce this
cost we can use a surrogate model to inform the kinetic code.
However, it is important to do so in a way that captures
the behavior of MD simulations across the entire space of
potential MD simulations. One way to reduce the cost of many
MD calculations is to use machine learning; a significant
but static number of MD calculations can be done ahead of
time, potentially in parallel, across the space of MD inputs,
and a surrogate model built on top of these calculations can
be applied for any point in the parameter space. In some
existing approaches, precomputed tables (e.g., Ref. [55]) are
interpolated. However, a table-building approach will not
scale well to mixtures with many species, as the size of a
table scales exponentially with the dimensionality of the input
space of the problem. In addition, another danger here is that
it may be difficult to anticipate which MD calculations are
needed ahead of time. To reduce this cost, we employ an
approach using active learning. In this paradigm, we run some
number of MD simulations ahead of time to build an initial
surrogate model. These points were chosen by randomly
sampling the parameter space. When we query the surrogate
model, we also request a model uncertainty; if the model
reports that its prediction carries a large uncertainty, then we
spawn a new MD simulation to collect ground-truth data.
Periodically, as new MD data become available, we retrain
the surrogate model using all available MD data. In this way,
machine learning forms a flexible surrogate that can adapt
to new macroscale conditions on the fly. The availability
of a high-quality surrogate model significantly reduces the
computational time spent performing MD.

Since a coarse-scale simulation may contain a large num-
ber of cells and run for many time steps, it is important to
select a machine learning architecture that can perform well
with large datasets. Given this, we find it prudent to choose a
parametric model over nonparametric models; nonparametric
models typically become slower to evaluate as the dataset
becomes larger because the model complexity scales with
the training dataset. It is also important to choose a method
that leads to a simple but effective uncertainty quantification
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scheme. We selected an ensemble of neural networks as a
good candidate, with the ensemble variance as a metric of
model uncertainty. This is an invocation of the query-by-
committee algorithm [20], an active learning algorithm where
new training points are selected based on the disagreement
of an ensemble (“committee”) of models. We emphasize that
there are many possible models and uncertainty quantification
strategies available and that the GLUE code can take advantage
of any of them; our choice is pragmatic and we believe
it is well motivated, but future research can explore many
different possibilities for surrogate modeling. We implement
the following neural network scheme using the neural network
library Pytorch [56].

The inputs and the outputs of the problem are as follows:
Given the nin = 5 inputs to MD (temperature, two densities,
and two ionization states), provide nout = 3 diffusion coeffi-
cients (two self and one mutual). For this, we train a multitask
regression model. A neural network consists of a series of
layers, each of which has many neurons. Each layer takes a
vector of inputs, x, and produces a vector of activations, x′,
one for each neuron, via the following equation:

x′ = f (W x + b). (13)

Here W is a weight matrix, b is a bias vector, and f is an
activation function, a differentiable, nonlinear function that
is applied element-wise over the input vector. We choose the
Rectified Linear Unit (ReLU) function f (a) = max(0, a). The
network is built from nlayers = 6 layers connected in series,
such that the output of each layer is fed as input into the next.
We choose the number of neurons in intermediate layers, also
called hidden layers, to be nhidden = 64, while the input and
output sizes of nin = 5 and nout = 3 for the first and last layers,
respectively, are fixed to match the size of the MD data space.

A network must be trained to capture the behavior of a
dataset; this consists of adjusting the parameters θ (weights
and biases) of each layer to produce a satisfactory model. We
use a typical formulation based on the minimization of a loss
function L based on the mean-squared error:

L = 1

nbatch

∑
i,t

(
D̂t

i − Dt
i

)2
, (14)

where index i runs over the training examples and t runs over
training targets. Dt

i represents the t-th diffusion coefficient for
example i and D̂t

i the prediction of the network, that is, the
output of the t-th neuron in the last layer of the network. This
output is minimized by accelerated gradient descent with the
Adam optimizer [57] in a series of epochs, that is, passes over
the entire training dataset, using batches of size nbatch = 50;
for each batch, the loss function is evaluated, the gradients
∂L/∂θ computed, and the optimizer invoked to adjust the
parameters of the network. Gradients are computed using
automatic differentiation, which is built into the PyTorch [56]
library used to implement the network. Ten percent of a
training dataset is withheld from gradient descent for vali-
dation with early stopping. We use a patience-based learning
scheduler that halves the learning rate if the validation loss
does not improve for npatience = 20 epochs and stops training
and reverts to the last best network if the validation loss
does not improve for 2npatience epochs, with a hard cap of

nepochs = 2000 at maximum. In practice, networks terminate
within a few hundred epochs. Both the input to and output
from the network are empirically normalized using the mean
and standard deviation of the training data and converted from
and to physical units when a request is received from the GLUE
code.

To build an ensemble for query-by-committee uncertainty,
train each network to a random subselection of the database;
we withhold a random 10% of the data from the network
for calibration. Between the random split of the data and the
random initialization of network weights, each member of
the ensemble produces a different model. For each model,
we check performance of the network on its calibration data
to ensure that the coefficient of determination R2 >= 0.7
to ensure the model is reasonable and reject it if not. The
process is continued until nensemble = 5 networks have been
successfully trained.

We flag model outputs as requiring MD information based
on a threshold on the standard deviation of ensemble pre-
dictions. To establish this threshold, we compare the typical
ensemble deviation to the typical network error. The average
RMS error of the networks applied to their calibration folds
is measured and recorded as a typical error scale Ecal. We
also record the mean absolute error of the ensemble on the
entire dataset as Eens and the average standard deviation of
the networks as σ . We form a typical disagreement S and
per-prediction quality flag si for any example i based on the
ensemble standard deviation of predictions σi:

S = σ
Ecal

Eens
, (15)

si = k
σi

S
. (16)

If si � 1, then a prediction is marked for simulation; predic-
tions with si < 1 are trusted. Since σ̄ is applied to the entire set
of training points, the calibration factor Ēcal/Ēens establishes
a scale linking the performance of the ensemble on the entire
training data to the performance individual models on unseen
calibration data; S represents the expected model fluctuations
on unseen data similar to the training set. The constant k = 3
controls how stringently we require the ensemble to agree in
order to defer to MD; setting k = 1 would request MD for any
sample above typical model disagreement. We select k = 3,
requiring MD when model fluctuations are significant. This
procedure is applied for each target t independently.

We tested the training algorithm on a database of 1100
points generated from MD. Each point in the database is
tested once by an ensemble that had no access to that point
for training by using 10-fold cross-validation procedure. The
network performance is shown in Fig. 1. For each target, the
coefficient of determination R2 is greater than 0.98, indicat-
ing that the training strategy produces good-quality models.
Points are colored by the quality flag si, and points that would
be selected for MD verification (si > 1) are circled in red. In
total across all targets, this algorithm selects 31 points, or less
than 3% of the dataset. The network is less confident about
regions where the diffusion coefficient is large, and data are
only sparsely available. These results demonstrate that the
approach is successful, but we emphasize that our modular
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FIG. 1. Test of ML surrogate model performance for all the
mutual diffusion points in the test dataset which were generated by
randomly sampling 1100 points from a five-dimensional input pa-
rameter space. (a) Deuterium-deuterium mutual diffusion, (b) argon-
deuterium mutual diffusion, and (c) argon-argon mutual diffusion.
Points selected for MD verification are circled in red.

GLUE code framework allows future work to improve on this
strategy or to use different surrogate models entirely.

The communication between the KT, MD, and the surro-
gate models is done using GLUE, which is described in the
next section.

C. GLUE workflow

To facilitate this coupling, we built on previous work
[16,58,59] on multiscale coupling of scientific codes. At its
simplest, we determine what physical properties need to be
exchanged between the various scales and derive application
programming interfaces (APIs) from these. We then provide

FIG. 2. Sample of the GLUE code implementation of our
microscale-macroscale coupling. On the macroscale simulation (left)
sending a request, the GLUE code (center) uses the active learning
algorithms (center purple) to determine if the model’s uncertainty
quantification is such that a new fine grain simulation (right) needs
to be called. Then either the result of the fine grain simulation or the
model’s prediction are returned to the macroscale simulation.

a lightweight infrastructure to communicate these physical
properties between the various scientific codes as shown in
Fig. 2.

With these APIs we are able to create a very modular sys-
tem where each component can be swapped out for a different
implementation. Currently, our infrastructure is written with
a collection of commodity software, including SQLite, but
we are in the process of evaluating tools such as Lawrence
Livermore National Laboratory’s Flux scheduler [60] as a
more exascale oriented workflow manager. Similarly, we rely
on LAMMPS [27] for our fine-scale calls but we could easily
switch to a different MD solution so long as it had similar
scientific capabilities. And for the purposes of the machine
learning and uncertainty quantification we use the popular
PyTorch library [56] but, again, interface in such a way that
different solutions can be slotted in and out.

This modularity is largely the key to allowing our approach
to replace a scientific code with a machine learning solution.
By treating the scale bridging infrastructures as an explicitly
defined contract we are able to swap out these implementa-
tions. If a neural net is capable of accepting the same inputs
and yielding the same outputs as an MD simulation, then it
is functionally identical and we are able to switch between
solutions at will.

Since the effectiveness of machine learning methods vary
depending on the available training data and problem, we add
in an additional check for any machine learning solution. In
our infrastructure code we query the models provided by the
machine learning solution for the output associated with our
inputs. Our surrogate model then provides both the expected
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FIG. 3. Top: predicted densities n(x, t ) at time t = 290 ps. We are initially using an SQL database containing 1100 MD points generated by
randomly sampling the parameter space. Bottom: Comparison of the active learning (dashed lines) and the MD (solid lines) at three different
times. An MD run using LAMMPS took approximately 7 min and 50 s per call on a 36 core Skylake. Surrogate model training took around
82 s, and surrogate model evaluation takes milliseconds or less. The model error in the case is 10−5.

outputs as well as the uncertainty quantification to indicate its
confidence that this specific model gave a valid answer. If the
confidence is too low, then we fall back to calling the actual
MD simulation and provide the data for the machine learning
solution to retrain and generate a new surrogate model for
future use.

III. RESULTS

In this section we will demonstrate the performance of our
multiscale coupling by investigating interfacial mixing of a
light species (deuterium) and heavy species (argon) in the
warm dense matter regime. These two species were chosen
because they are found in the foam and gas, respectively, of
the Marble experiment [21–23]. While the full experiment
consists of four (or possibly more) species, we begin with this
relatively simple binary mixture of the lightest and heaviest
element in the capsule.

We first consider the case of materials atomically mixing
due to a uniform, constant background electron temperature.
Next, we further test the robustness of the active learning
component by considering a linearly increasing background
electron temperature, which will move the physical conditions
outside the realm of our initial training dataset. This will lead
the machine learning algorithm into a parameter space
region with high uncertainty and will therefore require more
fine-scale calculations and on-the-fly updates of the surrogate
model.

A. Test problem 1 (instantaneous heating)

In this problem, we consider a one-dimensional deuterium-
argon interface case with equal concentrations, initially at

rest. The material number densities are n = 1025 cm−3, with
a material temperature of 100 eV. A background electron
temperature of 100 eV is kept constant over the simulation
time, which is meant to model the effects of preheat radiation
on the interface. The kinetic model is discretized with 64
points in space and a 403 velocity grid, with periodic boundary
conditions. We use a time step of 2 ps and we ran the
simulation up to 290 ps.

To verify the correctness of the model, we compare with a
direct (brute-force) coupling of BGK and MD, which in prin-
ciple requires 64 MD calculations at each time step. However,
as the simulation proceeds, some of the MD requests are exact
duplicates of those which already exist in the database, which
somewhat reduces the number of fine-scale requests.

The results of this problem are shown in Fig. 3. We observe
that the active learner correctly predicted the MD results for
all requests in this test case, as our training dataset provided
good coverage of the dynamically evolving simulation data.
The model error estimated with root-mean-squared error in
the case 10−5. Figure 4 illustrates the distribution of requests
executed to obtained microscopic information needed by the
macroscale code. We observed that the number of MD tasks
required represented less than 1% of the workload required in
the verification run.

B. Test problem 2 (gradual heating)

Next, we consider the same initial condition as in Test
Problem 1 and linearly increase the background electron
temperature from 100 to 600 eV over the course of the
simulation. This temperature ramp ensures that the simulation
dynamically travels through a much larger portion of the ni, T
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FIG. 4. Plot of the provenance of the fine-scale data delivered to
the coarse-scale model for the first problem, shown for each time step
and every grid cell. Almost all of the requests are handled by active
learning surrogate model, while a small number of more expensive
MD calls are made in the dynamically evolving mixing region. The
GLUE code also detects a few requests that are exact matches to calls
stored in the database. These are marked as duplicates (DP).

parameter space, which is likely to touch on regions with
higher uncertainty. Furthermore, the conditions at late time in
the simulation will leave the initial training set entirely, which
will challenge the framework to dynamically find a new model
as it pushes into conditions that it has not seen before. This
pushes the active learning framework finds extra region of
high uncertainty and consequently to request more MD points
as shown in Fig. 5. Not surprisingly, most of the MD calls are
focused on the initial deuterium region rather than the argon
region, as more mixing is occurring there.

Our multiscale scheme enables the use of MD-accurate
transport coefficients valid across coupling regimes to inform
hydrodynamics and kinetic codes. Transport coefficients are
generally computed using the Chapman-Enskog (CE) [61]
solution of the Boltzmann or Fokker-Planck equation through
an expansion of the distribution function. The key terms that
arise in this expansion are the so-called collision integrals,
which capture key properties of the particle interactions in the
hydrodynamic limit and are the inputs into the formulas for
the transport coefficients [9]. For weakly coupled plasmas, the
cross sections have been evaluated using a screened-Coulomb
potential and are available in the form of tables [55] and
analytical fits [62] for low-dimensional problems with few
species.

A recent theory, the effective potential theory [63], which
models many-body correlation effects by treating binary in-
teractions as arising through the potential of mean force,
rather than a screened Coulomb potential, provides transport
coefficients that cover the weakly and moderately coupled
regimes. The evolution of the coupling parameter defined as
� = 〈Z〉2/aT , where a is the Wigner-Seitz radius, T is the

FIG. 5. Plot of the provenance of the fine-scale data delivered to
the coarse-scale model for the second problem (temperature ramp),
shown for each time step and every grid cell. Most of the requests are
handled by active learning surrogate model, but more MD calls are
required due to the changing temperatures.

average temperature, and 〈Z〉 is the mean average ionization
[28], is shown in Fig. 6. As the simulations continue, trans-
port coefficients can be dynamically evolved to capture the
changing coupling regimes which are present in Marble-like
experiments [21–23] during preheat.

Finally, Table I shows a comparison of total computation
time for each of the two test cases. Since our workload is
embarrassingly parallel during a given batch, we give the cost
of each case in terms of how many MD calls are required.
The training and retraining cost of AL (a few seconds) is
negligible with respect to an MD run (7 min). The total
number of requests for each of the test problem is 8640.

FIG. 6. This figure illustrates the evolution of the coupling pa-
rameter of the plasma in time and space for the second problem. We
estimated the mean ionization state using a Thomas-Fermi model.
Initially, the region containing the deuterium is weakly coupled
while the argon region is strongly coupled due to its high charge
state (around ∼12 here). As the interface evolves, the mixed argon-
deuterium mixing region is in the moderately to strongly coupled
regime.
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TABLE I. We present the number of MD simulations needed for each of the test cases. Simulations were performed on the Darwin cluster
at Los Alamos National Laboratory on a 36 core Skylake microarchitecture. For the training purposes, we used a table of 1100 points. Ninety
percent of the dataset was used to train the network while withholding 10% for testing.

MD calls of Hero run MD calls during offline training MD calls during AL run

Case 1 6786 (∼113 h) 994 218 (∼20 h)
Case 2 7690 (∼128 h) 994 858 (∼31 h)

We show both the MD requests for the hero (MD-KT) and
the upscaling run which uses AL. These results showed that
this approach can produce high-quality results along with
considerable computational gains.

IV. CONCLUSIONS AND PERSPECTIVES

We have presented a multiscale framework to bridge
atomic to continuum scales. Our framework uses deep neural
networks to produce valid models of MD data on the fly
and communicates this information to our fine-scale model.
The performance of this method has been examined for two
test problems showing that the number of MD calls required
can be significantly reduced even for highly transient system
with large variations in local properties. Furthermore, we have
shown through this multiscale scheme that one can dynam-
ically evolve the transport coefficients to cover the physical
regimes (i.e., weakly and strongly coupled) visited during the
early stages of high-energy-density experiments.

Our future work will apply this framework to the four-
species multidimensional MARBLE pore collapse problem
using both the kinetic formulation and a direct numerical
simulation (DNS) code [64]. Molecular dynamics will be used
for the generation of mutual diffusion as in this present work
along with the additional transport coefficients (viscosity,
thermal conductivity, thermal diffusion) needed by the DNS
code.

We also plan to explore different machine learning work-
flows. In particular, while the query-by-committee method is
simple and effective, it is one of many available strategies for
uncertainty quantification. Future work may focus on evalu-
ating possible substitutes, such as dropout-based uncertainty
[65] or heteroskedastic loss functions [66]. Besides this, a
useful change to the ML workflow would be to allow running
MD simulations of subthreshold uncertainty in a priority
queue, with priority given by the uncertainty of the data—this
would not delay the coarse-scale simulation but would bet-

ter take advantage of any available computational resources
to deliver maximal information to the ML-based surrogate
model. In addition, parallel methods for active learning might
improve the workflow. By considering the full covariance of
the ensemble, rather than just the ensemble variance, it may
be possible to select points for MD in a more optimal way.
By estimating the relationship between different candidate
MD points using the model covariance, the active learning
procedure could attempt to determine if all fine-grained points
on a given time step that fail the uncertainty check need to be
run in MD, or if they are correlated with each other, in which
case a only a maximal covariance subset of points could be
dispatched.

Finally, job loads on clusters tend to vary heavily. Under
minimal load, spawning jobs as needed is a very effective
way to only use as many resources as are required by the
simulation at a given time. Under heavy load this results in
long stalls and failed runs as the spawned jobs spend the ma-
jority of their time in the job queue. One such way to resolve
this is to take advantage of resource pools. By utilizing tools
like Lawrence Livermore National Laboratory’s Flux [60], we
can launch fine-grain simulations in a controlled job pool and
increase or decrease the size of the resource pool based on the
current needs of the overall simulation. This allows us to take
advantage of patterns commonly associated with task based
runtimes [58] while continuing to avoid invasive changes to
scientific codes.
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