
Advances in Engineering Software 160 (2021) 102962

Available online 6 July 2021
0965-9978/© 2021 Elsevier Ltd. All rights reserved.

Asynchronous distributed-memory task-parallel algorithm for compressible 
flows on unstructured 3D Eulerian grids 

J. Bakosi *,a, R. Bird a, F. Gonzalez c, C. Junghans a, W. Li b, H. Luo b, A. Pandare a, J. Waltz a 

a Los Alamos National Laboratory, Los Alamos, NM, United States 
b North Carolina State University, Raleigh, NC, United States 
c Strong Analytics, Chicago, IL, United States   

A R T I C L E  I N F O   

Keywords: 
Shock hydrodynamics 
Finite element method 
Flux-corrected transport 
Charm++

Automatic load balancing 

A B S T R A C T   

We discuss the implementation of a finite element method, used to numerically solve the Euler equations of 
compressible flows, using an asynchronous runtime system (RTS). The algorithm is implemented for distributed- 
memory machines, using stationary unstructured 3D meshes, combining data-, and task-parallelism on top of the 
Charm++ RTS. Charm++’s execution model is asynchronous by default, allowing arbitrary overlap of 
computation and communication. Task-parallelism allows scheduling parts of an algorithm independently of, or 
dependent on, each other. Built-in automatic load balancing enables continuous redistribution of computational 
load by migration of work units based on real-time CPU load measurement. The RTS also features automatic 
checkpointing, fault tolerance, resilience against hardware failure, and supports power-, and energy-aware 
computation. We demonstrate scalability up to 25 × 109 cells at O (104) compute cores and the benefits 
of automatic load balancing for irregular workloads. The full source code with documentation is available at 
https://quinoacomputing.org.   

1. Introduction 

The numerical solution of the governing equations of fluids has a 
long history. The most popular methods to solve the Euler equations, 
governing inviscid flows, use finite difference (FD) [1], finite volume 
(FV) [2], and more recently, finite element (FE) methods [3]. While 
historically FD methods were developed first, today all of FD, FV, and FE 
methods enjoy wide popularity due to their respective strengths, 
depending on the type and needs of their application (e.g., complex flow 
geometries), algorithmic requirements (e.g., direct numerical simula-
tion of turbulence), and suitability for various supercomputing hard-
ware (e.g., graphics processing units). 

This paper describes the software implementation of a numerical 
method, suitable to solve the single-fluid Euler equations in complex 3D 
geometries, governing high-speed compressible flows, as required, e.g., 
in aerodynamics applications. The numerical method belongs to the FE 
family, developed in the 1980s, still useful today, due to its simplicity 
and low computational cost. The main contribution of this paper is to 
provide an example of how such a method can be implemented using an 
asynchronous, distributed-memory runtime system, that enables good 
parallel scalability to large computers (> 104 CPUs), required for large 

problems (> 107 mesh cells). Compard to synchronous programming, 
resulting in frequent but often unnecessary syncrhonization points 
imposed by the programming paradigm, asynchronous programming 
enables more overlap of computation, communication, and I/O. In 
addition, using the Charm++ runtime system (instead of the more 
common message passing paradigm, MPI) allows automatic load 
balancing, without requiring code from the application developer, in-
dependent of the source of the parallel load-imbalance, due to, e.g., 
adaptive mesh refinement, costlier local equations of state, higher order 
polynomials, etc. 

2. Objective 

This paper discusses the numerical implementation, verification, and 
performance of a finite element method for compressible high-speed 
flows for 3D unstructured grids using the Charm++ runtime system. 
The numerical method discussed closely follows [4] and we make no 
claims on its numerical accuracy, other than verifying its correctness, its 
design order of convergence for smooth solutions, and its convergence 
for discontinuous solutions. The main contribution is the discussion of 
the software implementation on Charm++ using an asynchronous 

* Corresponding author. 
E-mail address: jbakosi@lanl.gov (J. Bakosi).  

Contents lists available at ScienceDirect 

Advances in Engineering Software 

journal homepage: www.elsevier.com/locate/advengsoft 

https://doi.org/10.1016/j.advengsoft.2020.102962 
Received 8 June 2020; Received in revised form 14 October 2020; Accepted 24 December 2020   

https://doi.org/10.1016/j.advengsoft.2020.102962
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2020.102962&domain=pdf


Advances in Engineering Software 160 (2021) 102962

2

parallel computing paradigm targeting both shared-, and 
distributed-memory architectures. The main benefits of Charm++ are to 
allow arbitrary overlap of computation and communication, automatic 
checkpoint/restart, automatic fault tolerance, and automatic load 
balancing based on real-time CPU load measurement that is independent 
of the algorithm, leading to separation of concerns, code modularity, 
usability, and significantly increased performance. These features make 
such an implementation especially suitable for large multiphysics sim-
ulations with a priori unknown, heterogeneous, and/or dynamic parallel 
load distribution. 

The structure of the paper is as follows. In Section 3 we present the 
governing equations solved. Section 4 describes the numerical method. 
Section 5 gives a brief overview of the Charm++ runtime system, dis-
cussing the features used by the flow solver, and gives some details on 
the high level software design, and algorithmic choices. Section 6 dis-
cusses a set of test problems used for solution and implementation 
verification. Section 7 discusses scalability, parallel performance, and 
load balancing. Finally, Section 8 contains a summary and conclusions. 

3. The equations of compressible flow 

The governing equations under consideration are the 3D unsteady 
Euler equations, governing inviscid compressible flow, written here in 
flux-conservative form 

∂U
∂t

+
∂Fj

∂xj
= S, U =

⎧
⎨

⎩

ρ
ρui
ρE

⎫
⎬

⎭
,Fj =

⎧
⎨

⎩

ρuj
ρuiuj + pδij
uj(ρE + p)

⎫
⎬

⎭
, S =

⎧
⎨

⎩

Sρ
Su,i
SE

⎫
⎬

⎭
, (1)  

where the summation convention on repeated indices has been applied, 
and ρ is the density, ui the velocity vector, E = uiui/2 + e is the specific 
total energy, e is the specific internal energy, and p is the pressure. Sρ,

Su,i, and SE are source terms that arise from the application of the method 
of manufactured solutions, used for verification; these source terms are 
zero when computing practical engineering problems. The system is 
closed with the ideal gas law equation of state 

p = ρe(γ − 1), (2)  

where γ is the ratio of specific heats. The exact form of the equation of 
state is of secondary importance for this work, in principle any analytic 
or tabular equation of state could be used. 

4. The flow solver 

This section describes discretization in space (Section 4.1) and time 
(Section 4.2), and flux-corrected transport (Section 4.3). The method is 
based on a continuous Galerkin finite element method for linear 
tetrahedra. 

4.1. Discretization in space 

To arrive at a continuous Galerkin finite element method we start 
from the weak form of the governing Eq. (1), 
∫

Ω
Nv

(
∂U
∂t

+
∂Fj

∂xj
− S

)

dΩ = 0, v = 1, 2,…, n, (3)  

which requires that the error in the numerical solution, sampled at n 
discrete points, v, using the weighting functions Nv, vanish on the whole 

domain, Ω, in an integral sense. Numerically approximating the solution 
as U ≈ NwÛw, where Ûw denotes the unknowns at the discrete node w,

leads to the Galerkin weak statement 

∫

Ω
Nv

[

Nw∂Ûw

∂t
+

∂
∂xj

Fj
(
Nw Ûw

)
− S

(
Nw Ûw

)
]

dΩ = 0. (4)  

Integrating the flux term by parts, neglecting the resulting boundary>
integral (assuming zero flux on the problem boundary), and applying 
Fj(NwÛw) ≈ NwFj(Ûw) and S(NwÛw) ≈ NwS(Ûw) see [3], yields the final 
weak form for the whole domain, Ω,

∫

Ω
NvNwdΩ

∂Ûw

∂t
−

∫

Ω
NwdΩ

∂Nv

∂xj
Fj
(

Ûw
)
−

∫

Ω
NvNwdΩS

(
Ûw

)
= 0. (5)  

All integrals in Eq. (5) are evaluated by breaking up the domain, Ω, into 
sub-domains as a sum over integrals over discrete elements, Ωe,

where the inner summation is over points w forming Ωe (gather) and the 
outer summation is over tetrahedra Ωe connected to point v (scatter). 
Eq. (6) results in the following semi-discrete system of equations 

Mc Û,t = r
(

Û
)
, (7)  

where the comma denotes a derivative. The size of the consistent mass 
matrix Mc is n × n, where n is the number of nodes of the computational 
mesh. According to the sum in Eq. (6), only those elements contribute to 
a given row v of Mc which contain node v (scatter), thus Mc is sparse. 

4.2. Discretization in time 

Eq. (7) is discretized in time using a Lax–Wendroff (Taylor–Galerkin) 
scheme [5–7] implemented using two stages: 

Un+1/2 = Un +
Δt
2

Un
,t = Un −

Δt
2

∂
∂xj

Fj(Un) +
Δt
2

S(Un),

ΔU = Un+1 − Un = ΔtUn+1/2
,t = − Δt

∂
∂xj

Fj
(
Un+1/2)+ ΔtS

(
Un+1/2). (8)  

The above scheme combined with linear shape functions is identical to a 
two-stage Runge–Kutta Galerkin finite element method, and thus central 
differencing without damping. Stabilization is obtained by using con-
stant shape functions for the half step solution where the gather results 
in element quantities, followed by a scatter step using linear shape 
functions resulting in nodal quantities. Assuming linear tetrahedra, the 
combined spatial and temporal discretization that achieves this yields 
the following staggered scheme [3], 

Un+1/2
e =

1
4
∑4

w=1
Û

n
w −

Δt
2
∑4

w=1

∂Nw

∂xj
Fj
(

Û
n
w

)
+

Δt
2

1
4
∑4

w=1
S
(

Û
n
w

)
,

∑

Ωe∈v

∑

w∈Ωe

∫

Ωe

NvNwdΩeΔÛw =Δt
∫

Ωe

∂Nv

∂xj
Fj
(
Un+1/2

e

)
dΩe+Δt

∫

Ωe

NvS
(
Un+1/2

e

)
dΩe

(9)  

where Un+1/2
e is the vector of element-centered solutions at the half step. 

Note that the first step discretizes the flux integral before integration by 
parts, Eq. (4), while the second one after integration by parts, Eq. (5), 

∑

Ωe∈v

∑

w∈Ωe

∫

Ωe

NvNwdΩe
∂Ûw

∂t
=

∑

Ωe∈v

∑

w∈Ωe

∫

Ωe

NwdΩe
∂Nv

∂xj
Fj
(

Ûw
)
+

∑

Ωe∈v

∑

w∈Ωe

∫

Ω
NvNwdΩS

(
Ûw

)
, (6)   

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

3

hence the difference in sign. 

4.3. Flux-corrected transport 

Flux-corrected transport (FCT) is a solution to circumvent the 
consequence of Godunov’s theorem [8], which states that no linear 
scheme of order greater than 1 will yield monotonic solutions. Accord-
ingly, FCT is a nonlinear scheme that combines a high-, and a low-order 
scheme using limiting. 

In the FCT scheme we use, the high-order solution at the new time 
step can be written as 

Un+1 = Un + ΔUh = Un + ΔUl +
(
ΔUh − ΔUl) = Ul +

(
ΔUh − ΔUl),

(10)  

where ΔUh and ΔUl denote the solution increments of the high-, and 
low-order schemes, respectively. In Eq. (10), it is the last term that is 
limited in a way to avoid spurious oscillations as 

Un+1 = Ul + lim
(
ΔUh − ΔUl). (11)  

The high-order scheme scheme, given in Eq. (9), is symbolically written 
as 

McΔUh = r. (12)  

From Eq. (12) we construct a low order scheme by lumping the mass 
matrix and adding mass diffusion 

MlΔUl = r + d = r − cτ(Ml − Mc)U (13)  

where Ml is the lumped mass matrix and cτ is a diffusion coefficient. 
Using cτ = 1 guarantees a monotone low order solution, [3]. If we 
rewrite Eq. (12) as 

MlΔUh = r + (Ml − Mc)ΔUh, (14)  

the difference between the right hand sides of the high and low order 
schemes can be recognized as 

AEC = ΔUh − ΔUl = M− 1
l (Ml − Mc)

(
cτUn +ΔUh), (15)  

also called as the anti-diffusive element contributions (AEC). The AEC is 
then limited, Ce⋅AEC, and applied to advance the solution to the next 
time step using Eq. (11), where 0 ≤ Ce ≤ 1 is the limit coefficient for a 
given element e. 

4.4. The limiting procedure 

The limiting procedure to compute Ce closely follows [4]. The 
description here is given in terms of how the algorithm is broken up into 
computational tasks to prepare for the discussion on task-parallelism 
later. 

Task Left-hand side (LHS) 
Eq. (6) shows that the LHS is the consistent mass matrix. Mc is 

lumped by summing the rows to the diagonals. Inverting Mc distributed 
across computers would be costly. Using a lumped (diagonal) matrix 
instead reduces computational cost and software complexity at the cost 
of some additional numerical error but does not reduce the order of 
accuracy of the method [3]. If the mesh does not move and its topology 
does not change, the LHS needs no update between time steps. 

Task Right-hand side (RHS) 
The high-order right hand side is computed by the two-step pro-

cedure given by Eq. (9). Since the two steps are staggered, the gather 
takes information from nodes to cell centers, followed by a scatter, 
moving information from cells to nodes, both steps are contained within 

a single right hand side calculation within a time step. Within the two 
steps there is no need for parallel communication as an element always 
resides on a given mesh partition and only mesh nodes are shared be-
tween processing elements (PEs), whose solution values are 
communicated. 

Task Diffusion (DIF) 
A step of the limiting procedure is to compute the mass diffusion 

term in Eq. (13). Using linear tetrahedra, this is given for each element 
by 

− [cτ(Ml − Mc)]e = −
cτJe

120

⎡

⎢
⎢
⎣

− 3 − 1 − 1 − 1
− 1 − 3 − 1 − 1
− 1 − 1 − 3 − 1
− 1 − 1 − 1 − 3

⎤

⎥
⎥
⎦, (16)  

where Je = BA̅→⋅(CA̅→
×DA̅→

) is the element Jacobian, computed from the 
triple product of the edge vectors of the tetrahedron given by vertices A,
B,C, and D. 

Task Anti-diffusive element contributions (AEC) 
Another step is to compute the anti-diffusive element contributions, 

given in Eq. (15), for each element. For this Ml − Mc is given in Eq. (16), 
and the inverse of the lumped mass matrix, M− 1

l is obtained from the 
nodal cell volumes, computed by summing the quarter of each tetra-
hedron element volume to nodes. Once the AECs are computed for each 
element, the next immediate step is to sum all positive (negative) anti- 
diffusive element contributions to node i 

P±
i =

∑

e

{
max
min

}

(0,AECe). (17)  

Task Allowed limits (ALW) 
The limiting procedure requires the maximum and minimum nodal 

values of the low-order solution, Ul, and the previous solution, Un,

U*
i =

{
max
min

}
(
Ul

i,Un). (18)  

Another alternative is to only consider the low order solution, Ul, when 
computing the allowed solution bounds, which leads to the so-called 
’clipping limiter’ in place of Eq. (18): U*

i = Ul
i. This is followed by 

computing the maximum and minimum nodal values of all elements, 

U*
e =

{
max
min

}
(
U*

A,U
*
B,U*

C,U
*
D

)
, (19)  

then computing the maximum and minimum unknowns of the elements 
surrounding each node, 

Ui

max
min =

{
max
min

}(
U*

1,U
*
2,…,U*

m

)
. (20)  

The limit coefficients will be computed (see below) based on P±
i and the 

maximum and minimum increments and decrements the nodal solution 
values are allowed to achieve, 

Q±
i = Ui

max
min − Ul. (21)  

Task Limit coefficients (LIM) 
Defining the ratios of positive and negative element contributions for 

each node i that ensure monotonicity as 

R±
i =

{
min

(
1,Q±

i

/
P±

i

)
P+

i > 0 > P−
i

1 otherwise
, (22)  

the limit coefficient for each element is taken as the most conservative 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

4

ratio 

Ce = min
i∈Ωe

{
R+

i AEC > 0
R−

i AEC < 0
. (23)  

The limited AEC is then scatter-added to nodes 

Ai =
∑

i∈Ωe

Ce⋅AEC. (24)  

Task Applying the limiter (APPLY) 
The limited AEC is applied to the low-order solution according to Eq. 

(11), 

Un+1
i = Ul

i + Ai. (25)  
The above procedure is general, works on the numerical solution 

(instead on fluxes or slopes), and written as the same procedure for each 
scalar of a system of equations. This works well for independent scalars, 
but for a coupled system additional techniques have been developed to 
reflect the coupled nature of the equations in the limiting procedure, see 
also [3,4,9]. In particular, we have experimented with Löhner’s ’indi-
cator variable’ approach, which designates a physical variable, e.g., 
density, whose limit coefficient other variables inherit in a cell, as well 
as applying a minimum of the limit coefficients for all or some of the 
conserved variables. These techniques tend to produce better results for 
some problems while worse for others – in any case, such a priori 
knowledge of the problem computed is beneficial towards obtaining 
improved numerical solutions. 

5. Software design and implementation 

This section discusses various software implementation details of the 
flow solver described in Section 4. The implementation uses Charm++

as the parallel programming paradigm. The entire problem, in this case 
the computational mesh, is broken up into multiple chares. Chares can be 
thought of as data and associated functions that operate on them, as in 
any object-oriented programming paradigm. In code, a chare is repre-
sented by a C++ class. Since each chare holds a different partition of the 
mesh and associated data, this is simply the realization of the divide and 
conquer paradigm. Chares communicate with each other via message 
passing. Up to this point there is nothing new or special compared to any 
other code relying on a distributed-memory paradigm, e.g., the message 
passing interface (MPI). 

In the following sections we give a brief overview of the major fea-
tures of the Charm++ runtime system, followed by discussion on those 
specific features, used by the flow solver, that significantly differentiate 
this from other distributed-memory implementations. Finally, the main 
steps of the algorithm and its implementation are outlined. 

5.1. An overview of Charm++

Charm++ is a general-purpose production-grade many-tasking 
programming framework, runtime system, and ecosystem of libraries 
for modern high-performance computing systems, [10–14]. It offers 
high productivity and performance portability through features such as 
multicore and accelerator support, dynamic load balancing, fault 
tolerance, latency hiding, interoperability with MPI and OpenMP, and 
online job-resizing. Charm++ has been developed and maintained by 
the Parallel Programming Laboratory at the University of Illinois at 
Urbana-Champaign for 20+ years. It is similar to MPI in the sense that it 
allows writing high-performance applications for the largest 
distributed-memory computers. The important differences and main 
advantages of Charm++ over MPI are  

• Fully asynchronous execution model, allowing arbitrary overlap of 
computation and communication  

• Task-parallelism, scheduling parts of an algorithm independently of 
or dependent on each other  

• Automatic load balancing, redistributing computational load by 
migration of work units based on real-time CPU load measurement  

• Automatic checkpointing and fault tolerance, allowing restart with 
differing number of work units and resizing jobs on the fly instead of 
interruption  

• Support for power-, and energy-aware computation, by intelligent 
work redistribution based on, e.g., CPU frequency scaling or 
temperature  

• Interoperability with MPI, OpenMP, CUDA, from C++, Fortran, and 
Python 

For more information on Charm++ see http://charmplusplus.org 
and for publications see http://charm.cs.illinois.edu/papers. 

5.2. Communication with message passing in Charm++

In a Charm++ program, data and work-units (chares) interact via 
asynchronous function calls. Communication via message passing is 
realized by special class member functions, called entry methods. Entry 
methods differ from ordinary member functions in that they can be 
called remotely, by using the chare array handle addressed by the chare 
id and its member function to call. Function arguments to such entry 
methods can be of any standard or custom type. If the target of the chare 
happens to reside on a remote compute node, the runtime system seri-
alizes the function arguments into a byte stream, sends it across the 
network, unpacks it on the other side, and puts the function call into the 
local queue of the target processor. Different functionality (with asso-
ciated data) is divided into a chare array of such objects, thus an algo-
rithm is realized by a dynamically interacting arrays of chares. As an 
example, Listing 1 compares asynchronous message passing in MPI and 
Charm++, displaying code used to send and receive arrays whose size is 
only known at runtime and can be different on different chares/ranks, 
characteristic of unstructured-mesh solvers. In Charm++ point-to-point 
communication is done via such asynchronous entry-method function 
calls. 

The implementation (declaration and definition) of entry-method 
member functions, such as fn(...) in Listing 1, do not differ in any 
way from usual C++ (non-entry) methods. Such functions are, however, 
labeled as entry methods in Charm++ interface files, commonly with 
extension .ci, as shown in Fig. 1. While the examples listed in Listing 1 
send and receive a simple standard C++ vector (a contiguous-storage, 
dynamically-resizable, array), Charm++ also allows asynchronously 
sending and receiving arbitrarily complex custom-built data structures 
this way as well without measurable performance penalties, compared 
to floating-point calculations, as will be shown. Since the underlying 
programming paradigm of Charm++ is higher level than MPI + X 
(where X stands for some form of threading, e.g., OpenMP or CUDA), in 
Charm++ distributed-memory sends and receives may operate on (safe) 
custom data structures (instead of low-level byte-streams), e.g., con-
tainers built from C++ standard library vectors, trees, hash maps, or 
arbitrary user-defined data types. In Section 7 we demonstrate that 
communication using such high level data structures yields an insig-
nificant performance hit compared to computation. 

5.3. Problem decomposition in Charm++

It is important to appreciate that in Charm++ programs one usually 
does not address hardware elements, e.g., CPUs or threads. Instead, 
chare arrays elements have an ID, an integer by default. This makes 
sense, since the runtime system may migrate chares (and their data) 
from one compute node to another during computation to perform load 
balancing. Such migration is based on real-time load measurement and 
is transparent to the application. The runtime system dynamically and 
automatically adapts the computational load, monitoring load- 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

5

imbalance, and can also migrate data and work-units if it notices that a 
compute node failed or is about to fail, enabling fault tolerance. 

Similar to other distributed-memory solvers for unstructured 
meshes, after reading the mesh from computer file to memory, it is 
partitioned, usually by a coordinate-, or a graph-based partitioner. 
However, the number of mesh partitions does not have to equal the 
number of PEs. Experience shows that such overdecomposition (or virtu-
alization), i.e., significantly more work units (mesh partitions) than the 
available number of PEs, can be beneficial, especially with load 
balancing. While overdecompositon increases communication costs, it 
also comes with benefits: (1) useful computation happens on smaller 

mesh partitions which may improve cache utilization, and (2) finer- 
grain work units may be load-balanced more efficiently, as will be 
shown in Section 7. 

5.4. MPI interoperation and processor-aware collections 

The Charm++ paradigm is the single abstraction our implementa-
tion uses. We also rely on a number of third-party libraries some of 
which require MPI. This is not a problem with Charm++ as Charm++- 
code can seamlessly interoperate with MPI-only libraries. There are 
various ways Charm++ and MPI code can interact within a single 

Listing 1. Non-blocking send and receive of a variable-length array with MPI and Charm++.  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

6

application. We invoke library calls that contain direct MPI calls from 
Charm++ chare groups. Chare groups are similar to chare arrays with 
the important differences that there is a guaranteed single group 
element per physical processor and group elements never migrate. This 
enables invoking calls by MPI libraries from groups that otherwise know 
nothing about their environment. 

In particular, the flow solver uses Zoltan2 [15] for initial mesh 
partitioning (which supports multiple types of partitioners in parallel as 
well as overdecomposition), and ExodusII [16] (used for mesh and field 
solution output to files in parallel). Using existing libraries thus allows 
building on the specific expertise of their authors. 

Besides groups, another type of processor-aware chare collection in 
Charm++ is a nodegroup. Node groups are similar to groups (e.g., they 
do not migrate) but a node group is a collection of chares with one chare 
per process or logical (e.g., compute) node. Thus node groups allow writing 
code that must be executed on a compute-node basis. An example is 
N-to-M file I/O, which allows, for example, efficiently reading a large 
mesh from file to memory on N≪M (instead of M) compute nodes. This 
can be used to optimize I/O performance if N is the number of I/O nodes 
and M is the number of compute nodes on a large cluster. This is how our 
flow algorithm reads in its input computational mesh, which is followed 
by mesh partitioning and cell/node redistribution based on the output of 
the mesh partitioner. 

5.5. Task-parallelism 

Task-parallelism is a parallel programming technique used to express 
parts of an algorithm as a graph of connected or independent tasks. 
Besides the ubiquitous divide-and-conquer (data-parallelism), task- 
parallelism has been recently gaining popularity [17], complementing 
data-parallelism, to increase the degree of overlap among various tasks 
of an algorithm. 

In Charm++ task-parallelism is expressed via its structured DAG 
(SDAG) functionality, where DAG stands for Direct Acyclic Graph. DAGs 
are used to identify dependencies among individual tasks of an algo-
rithm, represented by graph nodes. A DAG in Charm++ is expressed by a 
simple language extension, specified in the Charm++ interface (.ci) 
file, that allows expressing the logic of interdependence among tasks. 
There may be different and multiple DAGs within a Charm++ chare 
array (class) definition. Each array element represents a different C++

class instance, holding its own data, e.g., a partition of the computa-
tional mesh and the solution. Execution of the algorithm within a single 
chare object instance is generally independent of execution within 
another chare array element. 

An example of a simple DAG may consist of tasks A, B, and C. Then if 
task A and B must both finish before C can be started, a DAG that ex-
presses this logic within Charm++ is given in Fig. 1. Besides separating 

*_complete() member functions by a comma, SDAG constructs also 
support more advanced control flow specifiers, such as for, while, and 
case statements. Using Charm++ SDAG code, fairly complex applica-
tion logic can be expressed. 

5.6. Flow algorithm software design using Charm++: setup 

We are now in a position to describe the main steps of the flow al-
gorithm in Section 4. The setup consists of the following main steps:  

1. Read user input (from command-line arguments and an input text 
file)  

2. Read the mesh in parallel (one linear chunk per compute node from a 
single file)  

3. Pass the linearly-distributed mesh to a mesh partitioner allowing 
overdecomposition  

4. Redistribute the mesh (cell connectivity and coordinates) based on 
the distribution from the partitioner  

5. Compute nodal communication maps in parallel 
6. Create migratable chare arrays holding a mesh partition (connec-

tivity, coordinates, nodal communication map, and solution arrays) 

Except for Step 1 above, all steps are parallel and no assumption is made 
on the size of the input mesh, e.g., that it must fit into the memory of a 
single compute node. All steps above are common in distributed- 
memory implementations of unstructured-mesh solvers, except our 
Charm++ implementation is fully asynchronous and puts data in 
migratable chare arrays. In the following we describe Step 5 in some 
detail, since a scalable distributed-memory implementation of 
computing the nodal communication maps appears less than straight-
forward with the constraint that the mesh cannot be loaded to a single 
compute node’s memory. 

5.7. Computing the nodal communication maps in parallel 

Until Step 5 during setup, only the mesh connectivity graph and the 
node coordinates are known on each chare. From this information our 
task in Step 5 is to compute the nodal communication map in a scalable 
fashion in parallel. No information is available on which chare might 
store the list of nodes that other chares share and we cannot assume that 
the entire mesh can fit into the memory of a single compute node. Any 
approach that singles out a master communicating with slaves will not 
scale. Additionally, we would like to minimize the amount of data that 
must be sent across the network during setting up the node communi-
cation map. A nodal communication map on each partition (chare) is 
required for any distributed-memory unstructured-grid solver that 
stores the solution unknowns at mesh nodes. On each chare such a map 

Fig. 1. Left: Structured DAG expressing a simple logic of task A and B must finish before task C can start. Right: Charm++ SDAG code expressing the logic on the left. 
Here a_complete() and b_complete() are member functions of Object that are implemented by the runtime system, used to trigger the completion of task A 
and B, respectively. The runtime system monitors the completion of tasks A and B, and only when both are complete will it call member function c(). 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

7

associates a list of node IDs to a chare ID a given chare shares nodes with. 
The map must store a (different) list of nodes for each of potentially 
multiple other chares it shares at least a single node with. Using the 
standard library in C++ such a map can be implemented using a map of 
vectors:At this point, the node communication map, \begin{verbatim} 
nodeCommMap\end{verbatim} is a dynamic but empty unordered 
(hash) map. Unordered maps are standard associative containers in C++

that contain key-value pairs with unique keys. In the map the keys are 
the chare IDs the given chare shares a list of nodes with and associated to 
each key (the value) is a vector of integers (a standard, continuous- 
storage, resizable array that knows its size). Search, insertion, and 
removal of elements of unordered maps have guaranteed average 
constant-time algorithmic complexity. Internally in a hash map, the el-
ements are not sorted in any particular order, but organized into 
buckets. Which bucket an element is placed into depends entirely on the 
hash of its key. This allows fast access to individual elements, since once 
the hash is computed, it refers to the exact bucket the element is placed 
into. This is an efficient data structure for dynamically and frequently 
changing data. 

5.7.1. Step 1: query 
One way to accomplish computing the nodal communication map in 

a distributed-memory setting that is scalable and performant is to build 
the map in two steps: (1) query and (2) response. Before the query each 

chare collects a list of boundary nodes from its mesh partition. A node is 
on a chare boundary if it belongs to a face of a tetrahedron that has no 
neighbor element at one of its faces. The list of boundary nodes can be 
computed using an algorithm that relies on standard data structures, e. 
g., elements surrounding points, derived from unstructured meshes [3, 
18]. Once the boundary nodes are computed, they are categorized into 
bins that will be sent to different chares to build the node communica-
tion map across all chares. The binning is determined by the node IDs 
and assigned to chares in a linear fashion. The nodes in each bin are then 
sent to the chare a given bin is assigned to. Note that the nodes in the 
bins are independent of their final destination: the target chare will 
merely be responsible for assembling the communication map for the list 
of nodes in the bins it is responsible for. Sending and receiving the node 
lists in bins avoid expensive collectives that would involve all chares and 
only entail point-to-point communication with data involving only a 
subset of the mesh boundary nodes. Since the boundary nodes are 
uniquely assigned to bins, no boundary node is sent to multiple chares, 
which keeps communicated data to a minimum. The chares receiving 
the boundary nodes in bins store them in two maps that are the inverse 
of each other: 

Listing 2. Response step following the query step in building the nodal communication maps. Besides showing the algorithm used to categorize the nodal 
communication maps by target and neighbor chares, this listing is also an example of how sending a complex data structure using Charm++ looks like in verbatim, i. 
e., not pseudo, code: The last two lines perform a for loop to send, in a point-to-point fashion, an integer (the sender chare ID, thisIndex) and the nodal 
communication map needed by targetchare, bndnodes, a std::map whose key is an integer and value is a hash set. Here std::map is a standard sorted 
associative container that contains key-value pairs with unique keys. Keys are sorted by using a comparison function. Search, removal, and insertion operations in 
such maps have logarithmic complexity as maps are usually implemented as red-black trees. The std::unordered_set (or hash set) is also a standard C++

associative container that contains a set of unique objects of type of its key. Search, insertion, and removal in such sets have average constant-time complexity. 
Internally, in unordered sets the elements are not sorted in any particular order, but organized into buckets. Which bucket an element is placed into depends entirely 
on the hash of its value. This allows fast access to individual elements, since once a hash is computed, it refers to the exact bucket the element is placed into. 

//storage f or nodal communication map f or each chare (mesh partition)
std :: unordered_map < int, std :: vector < int >> nodeCommMap;

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

8

//Node− > chare map
std :: unordered_map < int, std :: vector < int >> nodech;
//Chare− > node map, the inverse o f nodech
std :: unordered_map < int, std :: vector < int >> chnode;

where nodech associates chares (value) to nodes (key), while chnode 
associates nodes (value) to chares (value). These data structures are 
small, temporary, and will be thrown away after the response step. 

5.7.2. Step 2: response 
Once all chares have received their assigned bins, the response step 

starts by computing the communication map for each boundary node. 
Since nodech and chnode only contain data on queried nodes and this 
data originates from source chares that have these nodes, these inverse 
maps already contain the communication maps that we need. Thus we 
only have to categorize the maps by source chare. The response step is 
given in Listing 2. The algorithm categorizes the nodal communication 
maps by the querying source chare and prepares the hash map exp for 
sending the maps back. The syntax uses C++ structured bindings and 
range-based for loops for readability; note that this is actual code lifted 
from the source. The last step in Listing 2 is to send the categorized maps 
back to the source chares. The object thisProxy is a Charm++ handle 
to the Charm++ chare array collection this code is implemented in. 
Using array-like indexing into the collection itself, thisProxy[tar-
getchare].bnd(...) makes a call to the target chare array element 
and invokes its member function bnd(), an entry method, packing its 
arguments and sending them across the network if the targetchare 
happens to be on another compute node. Here thisIndex stands for 
the chare ID of the sender, so that the receiver knows where the 
contribution came from. The communication step in the response step is 
similar to that of in query, point-to-point and sending minimal data for 
boundary nodes. Node communication maps are computed only for 
those chares that queried the map from the given responding chare. The 
boundary nodes can also be thought of as a distributed table and each 
chare only works on a chunk of it. Note that a chare only sends data back 
to those chares that have queried the chare. 

5.8. Flow algorithm software design using Charm++: time stepping 

The last step of the setup phase, enumerated in Section 5.6, is to 
create the Charm++ chare arrays, designed to perform the time 

stepping. These chare arrays are migratable and bound. Bound arrays in 
Charm++ always migrate together while allowing separating different 
functionality and associated data. The important chare classes that 
interoperate during time stepping are  

• Transporter (single chare, driver),  
• Discretization (chare array, generic unstructured-grid solver 

base class),  
• DiagCG (chare array, child class to Discretization, specialized 

to the node-centered continuous Galerkin finite element discretiza-
tion scheme with a lumped-mass left-hand side and flux-corrected 
transport combined with Lax–Wendroff-like explicit time stepping 
scheme, discussed in this paper), and 

• DistFCT (chare array for distributed-memory flux-corrected trans-
port, used by DiagCG) 

The base Discretization and child DiagCG classes facilitate the 
well-known object-oriented design feature, runtime polymorphism. This 
enables code reuse and helps code generic to all types of discretizations 
stay uniform and code specific to a given discretization stay modular. 
Such a design is particularly useful when more than a single type of 
hydrodynamics schemes are implemented in a single code, as is our case, 
since we have multiple co-existing continuous (node-centered) as well as 
discontinuous (cell-centered) Galerkin finite element methods, [19]. 
The base class Charm++ chare array, Discretization, encapsulates 
data and member functions that are generic to all 
unstructured-grid-based discretization schemes. Its array elements store, 
in a distributed fashion, the mesh connectivity and node coordinates. As 
Discretization is a chare array, its elements are distributed across 
the whole problem on all available compute nodes and PEs, and can also 
migrate for load balancing. The child class DiagCG is also a chare array, 
whose elements store the unknown solution at mesh nodes and imple-
ments the particular discretization scheme, discussed in Section 4. The 
elements of DiagCG are bound to those of Discretization. This 
enables accessing data associated to the same problem partition, e.g., the 
mesh, by the child from the base using a raw pointer, since bound ele-
ments always migrate together during load balancing. Additionally, 
DistFCT is also bound to Discretization and DiagCG. 

With the above and Section 4 in mind, time stepping is preceded by 
(1) setting initial conditions and (2) computing the left hand side 
(task LHS). As discussed in Section 4.4, if the mesh does not change, the 
left hand side does not have to be recomputed during time stepping. A 
single time step consists of the following steps: 

Fig. 2. Left: Structured DAG expressing the logic of 
computing and communicating the RHS and the 
mass diffusion term. Both ownrhsand comrhs 
must finish before solve can start. Right: 
Charm++ SDAG code expressing the logic on the 
left. Only when both own and contributions to the 
boundary nodes are complete on a given chare will 
the runtime system call the member function 
solve(). Note the function argument passed to 
ownrhs_complete(). This is allowed by 
Charm++ even though the runtime system imple-
ments the body of this function. This is used here to 
pass through the diffusion term dif directly to the 
DiagCG::solve(), which avoids having to store 
this data in DiagCG’s state, reducing its size, which 
is advantageous for migration as well as check 
point/restart.   

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

9

1. Compute the size of the next time step, Δt  
2. Communicate Δt to all chares, performing a parallel all-to-all min() 

operation  
3. Compute local contributions to RHS and d, spawning tasks RHS 

and DIF, see Eqs. (9) and (16) 
4. Communicate the RHS and d, summing contributions to bound-

ary nodes  
5. When all contributions of RHS and d are ready on a chare, solve 

both the high-, and low-order system  
6. Compute the nodal P± and Q±, spawning tasks AEC and ALW  
7. Communicate contributions of P± and Q± across boundary nodes  
8. When all contributions to P± and Q± are ready on a chare, 

spawning task LIM, compute the limit coefficients, Ce, scatter- 
adding the limited AEC to nodes  

9. Communicate the limited AEC in nodes on the boundary  
10. When all contributions of the limited AEC are ready on a chare, 

apply the limited AEC on the low order solution, Eq. (25)  
11. Evaluate load imbalance and migrate if necessary  
12. Continue with Step 1, starting a new time step 

Steps 6–9 and computing d in Step 3 are performed by the bound 
DistFCT array elements while the rest by DiagCG. It is important to 
appreciate that during all steps, every chare array element holds and 
works on its own mesh partition and also has its own task state, which is 
different from the state of another chare. Chares communicate, in a 
point-to-point fashion, with their handful of neighbors, those that they 
share chare-boundary nodes with, see Section 5.7. As a result, no syn-
chronization is necessary beyond what is prescribed by the task graphs 
(discussed in detail below), except computing the new time step size, 
which is the single collective within a time step. This provides consid-
erable freedom for the runtime system to schedule tasks and overlap 
computation and communication, constantly monitoring real-time CPU- 
load and communication patterns. The system can also dynamically 
adapt to external factors influencing computation, e.g., CPU frequency 
scaling due to temperature deviations and temporarily (or notoriously) 

underperforming compute nodes, usually out of control of both de-
velopers and users. 

Steps 3–5: Fig. 2 shows the DAG and Charm++ code that express the 
logic behind Steps 3–5, the first computation/communication steps in a 
time step. The DAG is simple and prescribes that only when both own 
and contributions to the boundary nodes are complete on a given chare 
should the runtime system call the member function solve(), which 
computes both high-, and low-order (unlimited) solutions, Ul and ΔUh. 
As the DAG does not assume a particular ordering between the tasks 
ownrhs and comrhs, either can execute first or second and this order 
can also differ on different chares, working on different mesh partitions. 
As a result, the different tasks cannot assume being the first writing to a 
particular data array they operate on. The own and communicated 
portions of the RHS are buffered into arrays that are different from the 
ones in which the owned portions are stored. The own and communi-
cated contributions are then combined in solve(), at different times 
on different chares, when a chare is ready to call this function, inde-
pendent of other chares. 

Steps 6–10: Fig. 3 shows the DAG and Charm++ code that expresses 
the logic behind Steps 6–10, the limiting step. The individual tasks of the 
limiting procedure are discussed in Section 4.4. These are LHS, RHS, 
DIF, AEC, ALW, LIM, and APPLY. Tasks RHS and DIF have been already 
performed simultaneously in Steps 3–5 using the DAG in Fig. 2. Thus the 
limiting procedure involves the remaining tasks. Three intermediate 
nodal vectors are required for computing the limited high-order 
solution: the sum of all positive and negative AEC to nodes, P±, Eq. 
(17), the maximum and minimum increments and decrements the nodal 
solutions values are allowed to achieve, Q±, Eq. (21), and the limited 
AEC applied to nodes, A, Eq. (24). Besides the slightly more complex 
task logic, there is nothing new in Fig. 3 not encountered before: 
ordering among the edges of the graph is not assumed and thus the tasks 
must only write to disjoint data, which then are combined before used. 
DistFCT::apply() then calls back to DiagCG which applies the now 
combined limited AEC, updates the high-order solution, and continues 
by telling the runtime system to evaluate the degree of load imbalance 
across the whole problem which performs migration if necessary. A 
number of different load balancing strategies are available in Charm++, 
which can be configured simply by passing a different command line 
argument to the executable. A crucial point is that we simply turn on 
load balancing and the runtime system performs CPU load measurement 
and object migration if necessary, building on decades of research, 
expertise, and experience in load balancing strategies. When load 
balancing is finished, a member function is called on each chare, 
continuing to the next time step. 

Fig. 3. Left: Structured DAG expressing the 
logic of computing and communicating the 
nodal vectors, P±, Q±, A, required in the flux- 
corrected transport algorithm. As the top 
portion of the DAG instructs, all of ownaec, 
comaec, ownalw, and comaec must finish 
before lim can start. Task lim then spawns two 
tasks, ownlim and comlim, which both must 
complete before apply can be executed. Right: 
Charm++ SDAG code expressing the logic on 
the left. Only when both own and contributions 
to the boundary nodes for both P± andQ± are 
complete on a given chare will the runtime 
system call the member function lim(). Only 
when both own and contributions to the 
boundary nodes for A are complete on a given 
chare will the runtime system call the member 
function apply().   

Table 1 
Mesh sizes for convergence studies. Here K stands for thousand, M for million, 
and h is the average edge length.  

Mesh Points Tetrahedra h  

0 132651 750 K 0.02  
1 1030301 6 M 0.01  
2 8120601 48 M 0.005   

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

10

6. Solution verification 

This section presents test problems used to verify the accuracy and 
the correctness of the implementation of the numerical method. As ex-
pected, the method is 2nd-order accurate for smooth problems. 

We adopt a number of test problems that have been derived in [20, 
21] using the method of manufactured solutions for the Euler equations 
that yield smooth solutions. Since the analytical solution for these 
problems are known, the numerical errors can be quantified. The errors 
are also used to establish the order of accuracy of the method. Conver-
gence studies for each problem were performed with a series of finer 
meshes over a unit cube as the computational domain centered at the 
origin. Note that these are the same meshes that were used in [21]. The 
meshes were constructed from a collection of uniform hexahedra that 
were further subdivided into approximately uniform tetrahedra. Table 1 
summarizes the three meshes used including the number of points, 
number of tetrahedra, and average edge length, h. 

The global L2 error in each field variable was calculated as 

Fig. 4. Initial (first column) and final (second column) velocity, pressure (third column), and total energy distributions (fourth column), for α = 0.1 and β = 1.0 (top 
row), α = 1.0 and β = 0.1 (middle row), and α = β = 1.0 (bottom row) for the vortical flow problem. 

Table 2 
L2 errors and convergence rates for the vortical flow problem with α = β = 1.  

Mesh L2(ρ) L2(ρu1) L2(ρu2) L2(ρu3) L2(ρE)

750K 1.31× 10− 5  2.91× 10− 5  1.24× 10− 5  1.52× 10− 4  6.29× 10− 5  

6M 3.23× 10− 6  6.80× 10− 6  2.67× 10− 6  3.58× 10− 5  1.67× 10− 5  

48M 8.00× 10− 7  1.63× 10− 6  6.30× 10− 7  8.05× 10− 6  4.18× 10− 6  

p  2.01 2.06 2.08 2.15 2.00  

Fig. 5. L2 errors as a function of mesh resolution for the vortical flow problem.  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

11

||ε||2 =

∑n
v=1Mv

l

(
Û

v
− Uv

)2

∑n
v=1Mv

l
(26)  

where n is the number of points, Û
v 

and Uv are the exact and computed 
solutions at mesh point v, and Mv

l is the lumped mass matrix, i.e., vol-
ume, associated to mesh point v. The convergence rate p was then 
calculated as 

p =
log||ε||m+1

2 − log||ε||m2
loghm+1 − loghm (27)  

where m is a mesh index. 

6.1. Vortical flow 

The purpose of this problem is to test velocity errors generated by 

spatial operators in the presence of 3D vorticity and in particular the 
superposition of planar and vortical flows, analogous to vorticity 
stretching. The derivation of this test problem is given in [21], preceded 
by a simplified version published in [20]. The combination of vorticity 
and velocity gradients is a fundamental source of kinetic energy in flows 
that transition to shear-driven turbulence, and hence an important 
ingredient of computing many practical engineering and atmospheric 
flows. The analytical solution is 

ρ = 1

ui(xi) =

⎛

⎝
αx − βy
βx + αy
− 2αz

⎞

⎠

p(z) = p0 − 2ρα2z2

e = p(z)ρ(γ − 1),

(28)  

and the source terms, in Eq. (1), are 

Fig. 6. Density (top row), energy (middle row), and pressure (bottom row) distributions on center planes at four different simulation times (columns) for the 
nonlinear energy growth problem. 

Table 3 
L2 errors and convergence rates for the nonlinear energy growth problem.  

Mesh L2(ρ) L2(ρu1) L2(ρu2) L2(ρu3) L2(ρE)

750K 7.67× 10− 4  1.61× 10− 4  1.08× 10− 4  6.98× 10− 5  3.39× 10− 4  

6M 2.01× 10− 4  3.84× 10− 5  2.67× 10− 5  1.63× 10− 5  7.97× 10− 5  

48M 5.57× 10− 5  9.38× 10− 6  6.59× 10− 6  3.90× 10− 6  1.97× 10− 5  

p  1.85 2.03 2.02 2.06 2.02  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

12

Sρ = 0

Su,i =

⎛

⎜
⎜
⎝

ρ
(
α2 − β2)x − 2ραβy

ρ
(
α2 − β2)y + 2ραβx

0

⎞

⎟
⎟
⎠

SE = uiSu,i +
8ρα3z2

γ − 1
.

(29)  

The above solution was evolved for a single time unit using γ = 5/3,
p0 = 10, and ρ = 1 with three sets of parameters:  

1. α = 0.1, β = 1. This case corresponds to a predominantly vortical 
flow with a small amount of flow to and from the origin.  

2. α = 1, β = 0.1. This case corresponds to a weak vortex with strong 
flow away from the origin in the x − y plane and toward the origin in 
the z-direction. 

Fig. 7. Density, pressure, energy, and velocity on the surface at the final simulation time for the Rayleigh–Taylor unstable configuration.  

Fig. 8. Velocity components on the surface at three different simulation times (t = 0, 0.5, and 1.0) for the Rayleigh–Taylor unstable configuration. The velocity 
reverses direction over the indicated time interval. 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

13

3. α = β = 1. This case is effectively a superposition of the previous 
two, with vortical flow comparable in strength to the flow to and 
from the origin. 

Fig. 4 shows the initial and final velocity fields for each variant on center 
planes through the origin, which confirms the steady state nature of the 
problem. Also shown are the steady state pressure and energy fields. For 
the third case, Table 2 gives the L2 errors in the computed conserved 
quantities along with the measured convergence rates. A time step of 
0.002 was used for the coarsest mesh and successively halved for the 
finer meshes. Fig. 5 shows the log of the L2 errors as a function of the log 
of the average edge length. The measured convergence rate in all vari-
ables is approximately 2.0, as expected. 

6.2. Nonlinear energy growth 

The purpose of this problem is to test nonlinear, time-dependent 
energy growth and the subsequent development of pressure gradients 
due to coupling between the internal energy and the equation of state. 
This flow represents a basic physics component of any type of explosion, 
in which internal energy is converted to pressure gradients without the 
complicating effects of fluid momentum and kinetic energy. The deri-
vation of this test problem is given in [21]. The analytical solution is 

ρ(xi, t) = ρ0 + exp( − αt)g(xi)

ui(xi) = 0
p = [ρ0 + exp( − αt)g](γ − 1)

(
− 3ce − 3kh2t

)− 1/3

e =
(
− 3ce − 3kh2t

)− 1/3

(30)  

with 

g(xi) = 1 −
(
x2 + y2 + z2)

h(xi) = cos(βxπx)cos
(
βyπy

)
cos(βzπz), (31)  

and the source terms, in Eq. (1), are 

Sρ = − αexp( − αt)g

Su,i = 2kht[ρ0 + exp( − αt)g](γ − 1)
(
− 3ce − 3kh2t

)− 4/3 ∂h
∂xi

+
(
− 3ce − 3kh2t

)− 1/3
(γ − 1)exp( − αt)

∂g
∂xi

SE = ρkh2e4 + eSρ.

(32)  

Simulations of this problem were performed with the following pa-
rameters: 

ρ0 = 2; α = 0.25; κ = 0.8; βi = (1.0, 0.75, 0.5); ce = − 1 (33)  

The solution was evolved over a single time unit with γ = 5/3. A time 
step of 0.001 was used for the coarsest mesh and successively halved for 
the finer meshes. Fig. 6 shows the density, energy, and pressure distri-
butions at four different times on center planes through the origin. 
Table 3 gives the L2 errors in the conserved quantities computed along 
with the measured convergence rates. The measured convergence rate in 
all variables is approximately 2.0, consistent with expectations. 

6.3. Rayleigh–Taylor unstable configuration 

The purpose of this test case is to assess time-dependent fluid motion 
in the presence of Rayleigh–Taylor unstable conditions, i.e., opposing 
density and pressure gradients. The Rayleigh–Taylor instability is a basic 
feature of mixing flows with materials of different densities and the 
onset of turbulent flows that are very different from shear-driven flows 
[22]. Rayleigh–Taylor turbulence is induced by differences in material 
densities, reacting very differently to pressure gradients, characterized 
by a continuous conversion of potential to kinetic energy, yielding 
non-equilibrium flow (in which the production and dissipation of tur-
bulent kinetic energy is not in balance), statistically non-stationary en-
ergy spectra, and anisotropy even at the smallest scales [23]. The 
derivation of this test problem is given in [21]. The solution is 

ρ(x) = ρ0 −
(
βxx2 + βyy2 + βzz2)

ui(xi, t) = f (t)g(xi) = cos(kπt)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

zsin(πx)

zcos(πy)

−
1
2

πz2[cos(πx) − sin(πy)]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

p(x) = p0 + α
(
βxx2 + βyy

2 + βzz
2)

E =
p

ρ(γ − 1)
+

1
2

f 2gigi

(34)     

Fig. 9. Velocity magnitudes at a center plane at different simulation times for the Taylor–Green test problem.  

Table 4 
L2 errors and convergence rates for the Rayleigh–Taylor problem.  

Mesh L2(ρ) L2(ρu1) L2(ρu2) L2(ρu3) L2(ρE)

750K 4.50× 10− 4  6.04× 10− 4  6.46× 10− 4  4.22× 10− 5  3.35× 10− 4  

6M 1.38× 10− 4  1.84× 10− 4  1.92× 10− 4  1.28× 10− 5  8.29× 10− 5  

48M 4.22× 10− 5  5.58× 10− 5  5.49× 10− 5  3.98× 10− 5  2.12× 10− 5  

p  1.71 1.72 1.81 1.69 1.97  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

14

and the source terms, in Eq. (1), are 

Sρ = ui
∂ρ
∂xi

Su,i = ρgi
∂f
∂t

+ f giSρ + ρf 2gj
∂gi

∂xj
+

∂p
∂xi

SE = ρgigif
∂f
∂t

+

[
p

ρ(γ − 1)
+

1
2
f 2gigi

]

Sρ

+ρf gi

[
1

ρ(γ − 1)
∂p
∂xi

−
p

ρ2(γ − 1)
∂ρ
∂xi

+ f 2gj
∂gj

∂xi

]

+ f gi
∂p
∂xi

.

(34a)  

The solution was evolved over a single time unit with γ = 5 /3. A time 
step of 0.001 was used for the coarsest mesh and successively halved for 
the finer meshes. Fig. 8 depicts the velocity field at the surface at 
different simulation times, showing the reversal of the velocity compo-
nents in time, indicating the spatial and temporal dynamics of the ve-
locity field. Fig. 7 shows density, pressure, energy, and velocity on the 
surface at the final simulation time. Table 4 gives the numerical L2 errors 
in the conserved quantities computed. The order of convergence ap-
proaches the expected value of 2.0. 

6.4. Taylor–Green vortex 

3D simulations of the 2D Taylor–Green vortex, see e.g., [24], were 
performed using the same meshes as for the other test problems 
described above. A similar configuration was also computed in [20] and 
[25] on a different, practically 2D, domain. The Taylor–Green vortex 
problem is commonly used to examine transition to turbulence from a 
well-characterized initial state. The initial conditions consists of a reg-
ular pattern of sinusoidal variation in x-, and y-velocities, with the 
pressure satisfying a Poisson equation of incompressible flows and with 
constant density at all times. For the case of constant-density fluid, 

Taylor and Green [26] describe a semi-analytic solution suitable for 
early times. For the compressible case no exact solution is known, but 
this problem is widely-used as a test of multi-dimensional hydrody-
namics of disordered flow. Enforcing constant-density, the following 
solution 

ρ(x) = 1

ui(xi, t) =

⎛

⎜
⎜
⎝

sinπxcosπy

− cosπxsinπy

0

⎞

⎟
⎟
⎠

p(x) = 10 +
1
4

ρ(cos2πx + cos2πy)

e =
p(x)

ρ(γ − 1)

(35)  

is maintained in a steady state by the compressible-flow solver with the 
source terms 

Sρ = 0

Su,i = 0

SE =
3π
8
(cosπxcos3πy − cos3πxcosy).

(36)  

This test problem was also run for a single time unit with γ = 5/3. A time 
step of 0.002 was used for the coarsest mesh and successively halved for 
the finer meshes. Fig. 9 shows the velocity magnitudes across a center 
plane at different simulation times. Table 5 shows the numerical L2 er-
rors of the conserved quantities computed. As expected, the approximate 
order of convergence is 2.0. 

6.5. Sod’s shock tube 

Sod’s shock tube problem, see e.g., [24], is perhaps the simplest and 
most widely used example to test any numerical method intended for 
shock hydrodynamics. Its analytical solution is known by solving a 1D 
Riemann problem. The wave structure consists of a shock moving to the 
right, a contact discontinuity moving to the right, and a rarefaction wave 
moving to the left. This is not a severe test but can quickly identify 
problems with conservation and the wave structure. The flow here is 
modeled as a 3D tube with a circular cross section of unit length with a 
diameter of 0.05, with γ = 1.4, and the following initial conditions: 

ui(xi) = 0.0

ρ(xi) =

{
1.0 x < 0.5

0.125 x ≥ 0.5

p(xi) =

{
1.0 x < 0.5
0.1 x ≥ 0.5

(37)  

where x is the distance along the length of the tube. The density field is 
plotted on the surface of Mesh 1 at t = 0, and at t = 0.2 in Fig. 10. The 
numerical solution was also extracted at t = 0.2 along a line through the 
center of the tube. The density, velocity, total energy, and pressure are 
depicted in Fig. 11 for the successively finer meshes given in Table 6 
together with the analytical solution. 

Fig. 10. Surface mesh colored by density at t=0 and t=0.2 on mesh 1 for the 
Sod shock tube problem. 

Table 5 
L2 errors and convergence rates for the Taylor–Green problem.  

Mesh L2(ρ) L2(ρu1) L2(ρu2) L2(ρu3) L2(ρE)

750K 1.14× 10− 5  8.56× 10− 5  4.59× 10− 4  2.64× 10− 5  2.49× 10− 4  

6M 2.34× 10− 6  1.62× 10− 5  8.72× 10− 5  4.40× 10− 6  5.84× 10− 5  

48M 5.65× 10− 7  3.17× 10− 6  1.77× 10− 5  9.10× 10− 7  1.42× 10− 5  

p  2.05 2.35 2.30 2.27 2.04  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

15

6.6. Sedov’s blast wave 

Another test problem with a discontinuous solution is the Sedov 
problem [27], where a source of energy is defined to produce a shock in 
a single computational cell at t = 0. The Sedov problem is also widely 
used for shock hydrodynamics. Its solution is a spherically spreading 
wave starting from a single point and used for testing the ability of 
numerical methods to maintain spherical symmetry and to resolve sharp 
gradients. We used three successively finer meshes, given in Table 7, to 

compute the numerical solution in 3D with γ = 5/3 and the following 
initial conditions: 

ui(xi) = 0.0
ρ(xi) = 1.0

e(xi) =

{
1.0 × 10− 4 xi ∕= 0.0

es xi = 0.0

(38)  

where es and ps are mesh-dependent source values summarized in 
Table 7 along with the corresponding volume Vs of the source region. 
Note that energy is in units of Mbar − cm3/g, pressure is in units of 
Mbar, and source volume is in units of cm3. These initial conditions 
correspond to pressure ratios of O (108)–O (1010) across a single 
element. 

The numerical solution for the pressure and density at two different 
instants in time are given in Fig. 12. The numerical solution for the 
density was also extracted along a line through the x axis using the three 
meshes. This is plotted in Fig. 13 together with a semi-exact solution at 
t =1.0 µs. 

Fig. 11. Density, velocity, pressure, and total energy with their exact solutions along the center of the tube for Sod shock tube problem for 4 different meshes.  

Table 6 
Mesh sizes for the Sod shock tube problem. Here dx is the average edge length 
along the length of tube.  

Mesh Points Tetrahedra dx  

0 7294 34,181 0.840 
1 51,794 273,448 0.414 
2 389,139 2,187,584 0.206 
3 3,014,277 17,500,672 0.103  

Table 7 
Mesh sizes and source parameters for the Sedov problem. Here h is the average edge length.  

Mesh Points Tetrahedra h  Vs  es  ps  

1 65,958  362,363  0.029 1.14× 10− 6  5.42× 104  3.63× 104  

2 505,724  2,898,904  0.014 1.78× 10− 7  3.46× 105  2.32× 105  

3 3,956,135  23,191,232  0.007 2.23× 10− 8  2.77× 106  1.85× 106  

4 31,286,637  185,529,856  0.0035 2.79× 10− 9  2.21× 107  1.48× 107   

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

16

7. Parallel performance 

This section discusses parallel performance, including strong and 
weak scaling, the profile of a time step, and we demonstrate automatic 
load balancing using various strategies available in Charm++. 

7.1. Strong scaling 

Using increasing number of compute cores with the same problem 
measures strong scaling, characteristic of the algorithm and its parallel 
implementation. Strong scalability helps answer questions, such as How 
much faster can one obtain a given result (at a given level of numerical error) 
if larger computational resources were available. To measure strong scaling 
we ran the vortical flow problem using a 794 M-cell mesh on varying 
number of PEs for 100 time steps and measured the wall-clock time for 
the 100 steps. 

Fig. 14 depicts wall-clock times of 100 time steps using a 794 M-cell 
mesh. The figure shows that strong scaling is close to ideal up to 
approximately 30 K cores after which communication overwhelms 
computation. This is an important data point: the recommended mini-
mum load per core for this algorithm on this machine, is about 28 K 
elements per PE; throwing more resources at this size problem is not 
economical and, conversely, using less than about 28 K elements per 
core will likely yield suboptimal performance. 

Fig. 14 also shows the difference in performance of the algorithm 
between Charm++’s SMP (symmetric multi-processing) and non-SMP 
mode. SMP, compared to non-SMP, mode refers to a number of 
Charm++ implementation details that allow the runtime system to treat 
a logical compute node as a shared-memory machine, which then allows 
various optimizations, such as pointer passing instead of communication 
if both the sender and receiver reside on the same compute node. SMP 
mode also allows configuring the runtime system to use a designated 

Fig. 12. Surface pressure (top) and density (bottom) for the Sedov problem at t=0.5μs and t=1.0μs on Mesh 3.  

Fig. 13. Density profiles for the Sedov problem with increasing mesh resolution 
at t = 1.0μs. 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

17

compute core (or cores) for every logical node responsible solely for 
communication and allowing the rest of the cores to only perform 
computation. Such freedom in configuration allows tailoring the run-
time system specific to the hardware by, e.g., taking into account of 
caches shared by specific compute cores, and in general, allows a more 
optimal utilization of the multi-level memory hierarchy with non- 
uniform access costs at each level that is increasingly found in current 
supercomputing hardware. Simply put, Charm++’s SMP mode can be 
thought of as MPI + X, where X stands for some programming paradigm 
for threading and on-node parallelism, e.g., OpenMP, POSIX Threads, or 
Kokkos. In contrast, Charm++’s non-SMP mode can be thought of as 
“MPI everywhere”, where every compute core is treated as independent 
with its own memory space. Note that there are no source code changes, 
additional code, or duplicate kernels that would be required to utilize 
Charm++ in SMP vs. non-SMP mode. The code uses a single abstraction 
for parallel programming and that is Charm++. Selecting SMP or non- 
SMP mode amounts to building Charm++ in SMP or non-SMP mode 
and building and linking the solver the same way to the desired 
Charm++ instance as a library. 

We ran the same code running the same mesh and problem in both 
SMP and non-SMP mode and performed the strong scaling study for 
both. Wall-clock times, measuring time-stepping only, as well as total 
runtimes are given in Table 8, and the former are also plotted in Fig. 14. 
For all runs, the non-SMP setup corresponded to using all 36 cores of a 
compute node uniformly, while in SMP mode we designated a core for 
communication per each of the 2 sockets (18 cores) of a compute node. 
(This means that in SMP mode, of a total of 14,400 cores, 400 compute 
nodes, only 13600 were used for actual computation.) Fig. 14 shows 
that, in general, SMP mode is approximately 2x faster than non-SMP 
mode, c.f., the corresponding middle columns in Table 8. This is due 
to the benefits of SMP mode described above. 

Table 8 also shows the wall-clock measurements of the total 

runtimes. It is apparent that at the lower core counts (360–3600) non- 
SMP mode outperforms SMP mode when measured by total runtime. 
This is the effect of the unequal performance of reading the mesh fol-
lowed by mesh data redistribution and the computation of mesh node 
communication maps in SMP and non-SMP modes. Both modes perform 
these tasks in parallel, but SMP mode uses 2 parallel streams per 
compute node, while non-SMP mode uses 36. Thus non-SMP mode will 
perform better, at lower core counts. The data in the tables also show 
that this performance figure turns around between 3600 and 7200 PEs, 
where both SMP and non-SMP mode yield approximately equal total 
runtimes. At larger core counts (≈ 5 K) and beyond, SMP mode clearly 
outperforms non-SMP mode. This is expected, considering the limited 
parallelism of the underlying parallel file system. As expected, at larger 

Fig. 14. Strong scaling at O (104) compute cores of the using two different modes of Charm++: non-SMP and SMP.  

Table 8 
Wall-clock times for time stepping only (measuring 100 time steps) and total time (including mesh load and 
setup) in Charm++’s non-SMP and SMP modes. The time stepping times are plotted in Fig. 14.  

Number of PEs 100 time steps, sec, non-SMP Total time, sec, non-SMP 100 time steps, sec, SMP Total time, sec, SMP 

360 946 1235 800 2336 
720 610 849 375 1345 
900 501 723 281 964 

1800 289 480 136 578 
3600 157 370 67 311 
7200 84 312 37 275 

14,400 42 408 20 175 
28,800 21 930 16 213  

Fig. 15. Weak scaling up to 25 billion cells.  

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

18

core counts it is more beneficial to use SMP mode, e.g., at 36 K cores, the 
total runtime of non-SMP mode is almost 6 times that of SMP mode. 

7.2. Weak scaling 

Fig. 15 depicts wall-clock times of 100 time steps keeping the load 
per compute node the same. We start with a 48 M-cell mesh and perform 
an initial uniform mesh refinement before time stepping that replaces 
every tetrahedron in the computational mesh with 8 smaller ones and 
thus yields exactly 384 M cells and run this on 6 computes nodes. The 
next points were obtained by doing two and three refinement steps, 
respectively, yielding over 3B and almost 25B cells, respectively. 
Increasing the problem size in exact proportion with the computational 
resources establishes weak scalability, characteristic of the algorithm 
and its implementation. Weak scaling enables answering questions, such 
as How effective can one use the available (largest) compute resources if ever 
decreasing numerical errors, e.g., larger resolutions, are required. Fig. 15 
shows that the weak scaling of the algorithm is not ideal: there is an 
approximate 14% increase of computational cost compared to ideal 
weak scaling. This quantifies the “cost” of the algorithm and its imple-
mentation when used at ever larger scales (both larger problems and 
larger compute resources). 

7.3. Computational cost profile 

Fig. 16 depicts the relative CPU utilization of the various computa-
tional tasks during 100 time steps in SMP mode. This run was done on 25 
physical compute nodes, using 2 logical nodes per compute node, 
designating 2 PEs per each compute node for communication only, 
which leaves 850 worker PEs. The figure shows that the right hand side 
computation (gather+scatter) takes about 40% of a time step: this step 
consists of both tasks RHS and DIF, computing the right hand side of Eq. 
(1) including the flux and source terms for both the low and high order 
solutions (including mass diffusion). Another significant portion, 30%, is 
aec + alw, computing the anti-diffusive element contributions and the 
minimum and maximum increments of allowed solution values in mesh 
nodes, respectively, prerequisites of the FCT limiting procedure. 
Computing the limit coefficients, task lim computing Eqs. (21)–(24) in 
each node, costs a little over 10%. About 2–5% of the cost, purple in 
Fig. 16, is the cost of computing the size of the next time step size. The 
figure also shows that 10–15% of the total runtime is spent idle, when 
CPUs are waiting for messages without doing any useful work. Finally, 
the tiny black gaps between the white idle and the top of the figure 
denoting 100% is the cost of the runtime system: scheduling, sending 
and receiving messages, etc. 

Fig. 16. Average relative CPU utilization across 100 time steps and 850 worker CPUs. On the pie chart, communication cost: red – rhs communication: 0.7%, 
between yellow and light blue, green + blue + green – comaec + comalw + comlim: 1.2%. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 17. CPU utilization across 5 time steps on a single compute node (36PEs) from a 900-core run on 25 compute nodes. The task coloring corresponds to that of 
Fig. 16 and the small white vertical lines denote message sends. Note that the right hand side calculation, see Eq. (9), is broken up into two parts, since the gather step 
can be computed before the new Δt is available, followed by the scatter step, allowing overlap of computation and communication. 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

19

The pie-chart in Fig. 16, helps appreciate the communication costs. 
On the pie-chart, the tiny dark red section on the left depicts the cost of 
the communication (0.7% of a time step) of the right hand side (the rhs 
and diffusion). The cost of communication tasks, comaec, comalw, and 
comlim, see also Fig. 3, are depicted as almost vertical sections on the 
right between the light blue gather and the yellow lim slices. Their 
combined cost is 0.38%+ 0.44%+ 0.36% ≈ 1.2%. This puts the total 
relative cost of communication to just below 2% of the total runtime of 
time stepping. The dark blue section between the yellow lim and other 
light blue scatter (0.7%) depicts the total cost of combining the own 
and communicated portions of the limited AECs, Eq. (24), and of 
applying the limited solution, Eq. (25). 

Fig. 17 gives an idea of the CPU utilization by the different tasks in 
time and their overlapped execution due to asynchrony. The figure de-
picts 5 consecutive time steps on a single compute node, displaying 36 
PEs on the vertical axis. Based on the minimum, maximum, and average 
number of elements across the 850 mesh partitions, respectively, 
934,152, 934,153, and 934,152, one would think that CPU utilization 
should be very well-balanced. However, the timeline shows that even 
this extremely homogeneous load distribution results in appreciable idle 
times at the end of time steps, denoted by black between the blue gather 
and scatter regions. This adds up to the 10–15% average idle time, 
discussed above. This is likely caused by the uneven load due to the 
unequal number of boundary points among chares: mesh partitions in a 

Fig. 19. Grind-time during time stepping computing a Sedov problem without and with extra load in cells whose fluid density exceeds 1.5, inducing load imbalance, 
without and with load balancing. These simulations were run on a shared-memory workstation, in SMP mode, using 30 worker threads + 2 communication threads, 
on a 300K-cell mesh. Load balancing was invoked at every 10th time step for all load balancers. 

Table 9 
Timings for the Sedov problem, using a 300K-cell mesh, without and with extra load without and with load balancing on a shared-memory machine.  

Case Extra load Virtualization Charm+ load balancer Median grind-time, ms/step Total time, s Speedup relative to case 3 

1 no — — 215 93 — 
2 no 100× — 362 148 — 
3 yes — — 6898 2567 1.0×

4 yes 10× GreedyCommLB 2027 656 3.9×

5 yes 100× GreedyCommLB 788 312 8.2×

6 yes 100× GreedyLB+RefineLB 752 315 8.1×

7 yes 100× RefineKLB 732 310 8.2×

Fig. 18. Spatial distributions of the extra load, corresponding to the fluid density exceeding the value 1.5, during the time evolution of the Sedov problem on the 
300k-cell mesh: (left) shortly after the onset of load imbalance, (right) at end of the simulation. 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

20

corner of the cube have many boundary points compared to internal 
mesh partitions without any boundary points. As a result, computation 
work will inevitably differ on different PEs. 

While improvements to the above CPU utilization (e.g., to reduce the 
idle time and increase overlap) are likely possible, there are three 
important conclusions we can draw from the above discussion:  

1. The overhead of the runtime system is negligible compared to useful 
computation and communication. 

2. The communication costs (≈ 2%) are acceptable, especially consid-
ering the higher level (and safer) abstraction allowed by Charm++

compared to MPI-style programming, see also Listing 1.  
3. Even well-balanced distributed problems (measured by the number 

of computational cells) may lead to appreciable idle times. 

7.4. Load balancing 

To exercise the built-in load balancers in Charm++, and to demon-
strate them for an unstructured-grid solver, we have computed the 
Sedov problem, adding some extra computational load to those cells 
whose density exceeds the value of 1.5. This mimics, e.g., combustion (e. 
g., a burn front), non-trivial material equations of state, etc., and rep-
resents realistic load imbalance, characteristic of multi-physics 
simulations. 

Fig. 19 depicts the simulation time during time stepping, measured 
in ms/step, for a number of shared-memory runs on a 300K-cell mesh 
(mesh 1), taking 500 time steps. One can see that the density peak ex-
ceeds the value of 1.5 around the 130th time step, inducing load 
imbalance and this persists until the end of the simulation. The extra 
load corresponds to the cells depicted in Fig. 18, displayed at two 
different times. It is clear from Fig. 19 that multiple load balancing 
strategies can successfully and effectively homogenize the uneven, 

dynamically generated, a priori unknown computational load. The 
common requirement for effective load balancing is fine-grained work 
units, ensured by increasing the degree of overdecomposition (virtual-
ization) from 1 to 100x, which yields 100× the mesh partitions 
compared to the number of CPUs the problem is running on. As ex-
pected, increasing the number of partitions beyond the number of CPUs 
has a cost due to increased communication cost, c.f., black and red lines. 
Table 9 shows some timings without and with load balancing. For this 
setup the GreedyCommLB load balancer performs the best, yielding 8.2x 
speedup compared to using no load balancing. 

Fig. 20 shows simulation times for a larger, 3M-cell mesh (mesh 2), 
run on 10 computes nodes of a distributed-memory cluster with 36 
CPUs/node. Except the larger mesh run on a cluster, everything else is 
the same as before. For the distributed-memory computations, besides 
centralized load balancers (GreedyCommLB, GreedyRefineLB, RefineLB, 
RefineKLB), here we have also used distributed load balancers, e.g., 
DistributedLB and NeighborLB, available in Charm++. As their name 
suggests, centralized load balancers collect load imbalance information 
to a single PE, but their decision is more accurate due to full knowledge 
of the entire simulation on a single PE. On the other hand, distributed 
load balancers only exchange neighbor information thus they are less 
accurate but cost less. This is consistent with our findings in Fig. 20 as 
well as the timings in Table 10. For this problem, the best performance is 
achieved by NeighborLB with a speedup over 10× compared to no load 
balancing. 

As shown, excellent performance can be obtained on both shared-, 
and distributed-memory machines using the built-in automatic load 
balancers of Charm++. We emphasize that we wrote no load balancing 
code: we simply ensure overdecomposition and turn on load balancing; 
the runtime system measures real-time CPU load and automatically 
performs object migration to homogenize the load. This is particularly 
beneficial for applications with a priori unknown or dynamically 

Table 10 
Timings for the Sedov problem, using a 3M-cell mesh, with extra load with and without load balancing on 10 compute nodes of a distributed-memory cluster.  

Case Extra load Virtualization Charm+ load balancer Median grind-time, ms/step Total time, s Speedup relative to case 3 

1 no — — 222 93 — 
2 no 100× — 630 359 — 
3 yes — — 11,562 4618 1.0×

4 yes 10× GreedyCommLB 2530 1231 3.8×

5 yes 100× GreedyCommLB 1685 1058 4.4×

6 yes 100× DistributedLB 1209 514 9.0×

7 yes 100× NeighborLB 995 430 10.7×

Fig. 20. Grind-time during time stepping computing a Sedov problem with extra load in cells whose fluid density exceeds the threshold of 1.5, inducing load 
imbalance. These simulations were run on a distributed-memory cluster on 10 compute nodes, in SMP mode, using 34 worker threads + 2 communication threads per 
node, on a 3M-cell mesh. Load balancing was invoked at every 10th time step for all load balancers. 

J. Bakosi et al.                                                                                                                                                                                                                                   



Advances in Engineering Software 160 (2021) 102962

21

changing load distribution, ubiquitous in multiphysics simulations and 
characteristic of heterogeneous performance of large data centers. The 
data also demonstrates that the cost of load balancing is negligible 
compared to the savings over the unbalanced problem without load 
balancing. 

8. Summary and conclusions 

This paper discussed the implementation, verification, and parallel 
performance of a node-centered continuous Galerkin finite element flux- 
corrected transport algorithm for the simulation of high-speed 
compressible fluid dynamics on large 3D unstructured meshes using 
the Charm++ tasking runtime system. We have also demonstrated the 
benefits of automatic load balancing in Charm++ with irregular 
workloads. 

The source code with documentation is available at https:// 
quinoacomputing.org. Using the Charm++ runtime system enables 
automatic overlap of computation, communication, and I/O, and 
therefore good scalability, and allows automatic load balancing, i.e., 
without requiring any code from the application developer, and inde-
pendent of the source of the load imbalance, e.g., higher temperatures at 
a corner of the data center, a slower CPU or adaptive mesh refinement, 
to name a few. Load balancing can simply be enabled and computational 
load is homogenized, using continuous real-time CPU load measurement 
by the runtime system, using advanced strategies, across large 
distributed-memory computations. The main price for these features, in 
our opinion, is a somewhat steep learning curve of the asynchronous 
programming paradigm, which yields a highly nonlinear software 
structure and a new family of (asynchronous, i.e., non-deterministic) 
problems during code development. 

CRediT authorship contribution statement 

J. Bakosi: Conceptualization, Software, Validation, Writing - review 
& editing, Supervision, Funding acquisition, Project administration. R. 
Bird: Software, Validation. F. Gonzalez: Software, Validation. C. Jun-
ghans: Software, Funding acquisition, Project administration. W. Li: 
Software, Validation. H. Luo: Software, Validation. A. Pandare: Soft-
ware, Validation. J. Waltz: Software, Validation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The first author thanks Charmworks, Inc., for their helpful sugges-
tions regarding load balancing, their Projections tool, and programming 
with Charm++ in general. The first author also thanks Neil Carlson of 
Los Alamos National Laboratory for suggesting the algorithm used for 
computing the nodal communication maps in parallel, for many dis-
cussions on solving partial differential equations on unstructured 
meshes, and software development in general. The work presented in 
this paper was supported by the Laboratory Directed Research and 
Development program of Los Alamos National Laboratory under project 
number LDRD-20170127-ER. LANL Report LA-UR-20-21450. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.advengsoft.2020.102962 

References 

[1] Hirsch C. Numerical computation of internal and external flows1. The MIT Press; 
1988. 

[2] LeVeque R. Finite volume methods for hyperbolic problems. Cambridge texts in 
applied mathematics. Cambridge University Press; 2002, ISBN 9781139434188. 
https://books.google.com/books?id=mfAfAwAAQBAJ. 

[3] Löhner R. Applied computational fluid dynamics techniques: an introduction based 
on finite element methods. Wiley; 2008.ISBN 9780470519073, https://onlin 
elibrary.wiley.com/doi/book/10.1002/9780470989746 

[4] Löhner R, Morgan K, Peraire J, Vahdati M. Finite element flux-corrected transport 
(FEM-FCT) for the Euler and Navier–Stokes equations. Int J Numer Meth Fluids 
1987;7(10):1093–109. https://doi.org/10.1002/fld.1650071007. 

[5] Lax P, Wendroff B. Systems of conservation laws. Commun Pure Appl Math 1960; 
13(2):217–37. https://doi.org/10.1002/cpa.3160130205.https://onlinelibrary. 
wiley.com/doi/abs/10.1002/cpa.3160130205 

[6] Donea J. A Taylor–Galerkin method for convective transport problems. Int J Numer 
Meth Eng 1984;20:101–11. 

[7] Löhner R, Morgan K, Zienkiewicz OC. The solution of non-linear hyperbolic 
equation systems by the finite element method. Int J Numer Methods Fluids 1984;4 
(11):1043–63. https://doi.org/10.1002/fld.1650041105.https://onlinelibrary. 
wiley.com/doi/abs/10.1002/fld.1650041105 

[8] Godunov SK. Eine Differenzenmethode für die Näherungsberechnung unstetiger 
Lösungen der hydrodynamischen Gleichungen. Mat Sb Nov Ser 1959;47:271–306. 

[9] The design of flux-corrected transport (FCT) algorithms for structured grids. In: 
Kuzmin D, Löhner R, Turek S, editors. Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2005. p. 29–78.ISBN 978-3-540-27206-9 

[10] Charm++: Parallel programming framework; http://charmplusplus.org. 
[11] Charm++: Parallel programming framework research; http://charm.cs.illinois. 

edu/research/charm. 
[12] Kale LV, Krishnan S. Charm++: a portable concurrent object oriented system based 

on c++. SIGPLAN Not 1993;28(10):91–108. https://doi.org/10.1145/ 
167962.165874. 

[13] Shu W, Kale L. Chare kernel—A runtime support system for parallel computations. 
J Parallel Distrib Comput 1991;11(3):198–211. https://doi.org/10.1016/0743- 
7315(91)90044-A. 

[14] Kale L, Bhatele A. Parallel science and engineering applications: the charm++

Approach. Series in Computational Physics. CRC Press; 2016.ISBN 
9781466504134, https://books.google.com/books?id=xbzMBQAAQBAJ 

[15] Zoltan: Parallel Partitioning and Load Balancing; http://www.cs.sandia.gov/Zoltan. 
[16] ExodusII: The Sandia Engineering Analysis Code Access System (SEACAS) is a suite 

of preprocessing, postprocessing, translation, and utility applications supporting 
finite element analysis software using the Exodus database file format; https://gith 
ub.com/gsjaardema/seacas. 

[17] Kidder LE, Field SE, Foucart F, Schnetter E, Teukolsky SA, Bohn A, et al. SpECTRE: 
A task-based discontinuous Galerkin code for relativistic astrophysics. J Comput 
Phys 2017;335:84–114. https://doi.org/10.1016/j.jcp.2016.12.059.http://www. 
sciencedirect.com/science/article/pii/S0021999117300098 

[18] Waltz J. Derived data structure algorithms for unstructured finite element meshes. 
Int J Numer Meth Eng 2002;54(7):945–63. https://doi.org/10.1002/nme.453. 

[19] Li W, Luo H, Bakosi J. A p-adaptive discontinuous Galerkin method for 
compressible flows using Charm++. AIAA scitech 2020 forum, Orlando, Florida, 
6–10 January, 2020. 2020. 

[20] Waltz J, Canfield T, Morgan N, Risinger L, Wohlbier J. Verification of a three- 
dimensional unstructured finite element method using analytic and manufactured 
solutions. Comput Fluids 2013;81:57–67. https://doi.org/10.1016/j. 
compfluid.2013.03.025.http://www.sciencedirect.com/science/article/pii/ 
S0045793013001333 

[21] Waltz J, Canfield T, Morgan N, Risinger L, Wohlbier J. Manufactured solutions for 
the three-dimensional Euler equations with relevance to inertial confinement 
fusion. J Comput Phys 2014;267:196–209. https://doi.org/10.1016/j. 
jcp.2014.02.040.http://www.sciencedirect.com/science/article/pii/S0021999 
114001661 

[22] Boffetta G, Mazzino A. Incompressible Rayleigh-Taylor turbulence. Annu Rev Fluid 
Mech 2017;49(1):119–43. https://doi.org/10.1146/annurev-fluid-010816- 
060111.https://doi.org/10.1146/annurev-fluid-010816-060111 

[23] Livescu D, Ristorcelli J, Gore R, Dean S, Cabot W, Cook A. High-Reynolds number 
Rayleigh–Taylor turbulence. J Turbul 2009;10(13). https://www.tandfonline. 
com/doi/full/10.1080/14685240902870448. 

[24] Kamm J, Brock J, Brandon S, Cotrell D, Johnson B, Knupp P, et al. Enhanced 
verification test suite for physics simulation codes. Tech. Rep. Los Alamos National 
Laboratory; 2008. 

[25] Waltz J. Microfluidics simulation using adaptive unstructured grids. International 
Journal for Numerical Methods in Fluids 2004;64(9):939–60. https://doi.org/ 
10.1002/fld.753. 

[26] Taylor GI, Green AE. Mechanism of the production of small eddies from large ones. 
Proc R Soc Lond Ser A- Mathematical and Physical Sciences 1937;158(895): 
499–521. https://doi.org/10.1098/rspa.1937.0036. 

[27] Sedov L. Similarity and dimensional methods in mechanics. Taylor & Francis; 
1993.ISBN 9780849393082; https://www.books.google.com/books?id=xXSg388S 
u38C 

J. Bakosi et al.                                                                                                                                                                                                                                   


	Asynchronous distributed-memory task-parallel algorithm for compressible flows on unstructured 3D Eulerian grids
	1 Introduction
	2 Objective
	3 The equations of compressible flow
	4 The flow solver
	4.1 Discretization in space
	4.2 Discretization in time
	4.3 Flux-corrected transport
	4.4 The limiting procedure
	Task Left-hand side (LHS)
	Task Right-hand side (RHS)
	Task Diffusion (DIF)
	Task Anti-diffusive element contributions (AEC)
	Task Allowed limits (ALW)
	Task Limit coefficients (LIM)
	Task Applying the limiter (APPLY)


	5 Software design and implementation
	5.1 An overview of Charm++
	5.2 Communication with message passing in Charm++
	5.3 Problem decomposition in Charm++
	5.4 MPI interoperation and processor-aware collections
	5.5 Task-parallelism
	5.6 Flow algorithm software design using Charm++: setup
	5.7 Computing the nodal communication maps in parallel
	5.7.1 Step 1: query
	5.7.2 Step 2: response

	5.8 Flow algorithm software design using Charm++: time stepping

	6 Solution verification
	6.1 Vortical flow
	6.2 Nonlinear energy growth
	6.3 Rayleigh–Taylor unstable configuration
	6.4 Taylor–Green vortex
	6.5 Sod’s shock tube
	6.6 Sedov’s blast wave

	7 Parallel performance
	7.1 Strong scaling
	7.2 Weak scaling
	7.3 Computational cost profile
	7.4 Load balancing

	8 Summary and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References


