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We discuss the implementation of a finite element method, used to numerically solve the Euler equations of
compressible flows, using an asynchronous runtime system (RTS). The algorithm is implemented for distributed-
memory machines, using stationary unstructured 3D meshes, combining data-, and task-parallelism on top of the
Charm++ RTS. Charm++’s execution model is asynchronous by default, allowing arbitrary overlap of
computation and communication. Task-parallelism allows scheduling parts of an algorithm independently of, or
dependent on, each other. Built-in automatic load balancing enables continuous redistribution of computational
load by migration of work units based on real-time CPU load measurement. The RTS also features automatic
checkpointing, fault tolerance, resilience against hardware failure, and supports power-, and energy-aware
computation. We demonstrate scalability up to 25 x 10° cells at #(10*) compute cores and the benefits
of automatic load balancing for irregular workloads. The full source code with documentation is available at
https://quinoacomputing.org.

1. Introduction

The numerical solution of the governing equations of fluids has a
long history. The most popular methods to solve the Euler equations,
governing inviscid flows, use finite difference (FD) [1], finite volume
(FV) [2], and more recently, finite element (FE) methods [3]. While
historically FD methods were developed first, today all of FD, FV, and FE
methods enjoy wide popularity due to their respective strengths,
depending on the type and needs of their application (e.g., complex flow
geometries), algorithmic requirements (e.g., direct numerical simula-
tion of turbulence), and suitability for various supercomputing hard-
ware (e.g., graphics processing units).

This paper describes the software implementation of a numerical
method, suitable to solve the single-fluid Euler equations in complex 3D
geometries, governing high-speed compressible flows, as required, e.g.,
in aerodynamics applications. The numerical method belongs to the FE
family, developed in the 1980s, still useful today, due to its simplicity
and low computational cost. The main contribution of this paper is to
provide an example of how such a method can be implemented using an
asynchronous, distributed-memory runtime system, that enables good
parallel scalability to large computers (> 10* CPUs), required for large
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problems (> 10”7 mesh cells). Compard to synchronous programming,
resulting in frequent but often unnecessary syncrhonization points
imposed by the programming paradigm, asynchronous programming
enables more overlap of computation, communication, and I/0. In
addition, using the Charm++ runtime system (instead of the more
common message passing paradigm, MPI) allows automatic load
balancing, without requiring code from the application developer, in-
dependent of the source of the parallel load-imbalance, due to, e.g.,
adaptive mesh refinement, costlier local equations of state, higher order
polynomials, etc.

2. Objective

This paper discusses the numerical implementation, verification, and
performance of a finite element method for compressible high-speed
flows for 3D unstructured grids using the Charm++ runtime system.
The numerical method discussed closely follows [4] and we make no
claims on its numerical accuracy, other than verifying its correctness, its
design order of convergence for smooth solutions, and its convergence
for discontinuous solutions. The main contribution is the discussion of
the software implementation on Charm++ using an asynchronous
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parallel computing paradigm targeting both shared-, and
distributed-memory architectures. The main benefits of Charm++ are to
allow arbitrary overlap of computation and communication, automatic
checkpoint/restart, automatic fault tolerance, and automatic load
balancing based on real-time CPU load measurement that is independent
of the algorithm, leading to separation of concerns, code modularity,
usability, and significantly increased performance. These features make
such an implementation especially suitable for large multiphysics sim-
ulations with a priori unknown, heterogeneous, and/or dynamic parallel
load distribution.

The structure of the paper is as follows. In Section 3 we present the
governing equations solved. Section 4 describes the numerical method.
Section 5 gives a brief overview of the Charm++ runtime system, dis-
cussing the features used by the flow solver, and gives some details on
the high level software design, and algorithmic choices. Section 6 dis-
cusses a set of test problems used for solution and implementation
verification. Section 7 discusses scalability, parallel performance, and
load balancing. Finally, Section 8 contains a summary and conclusions.
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3. The equations of compressible flow

The governing equations under consideration are the 3D unsteady
Euler equations, governing inviscid compressible flow, written here in
flux-conservative form

oU OF; P P Sy
o + 67} =3, U= pu; p,F; =< puiuj +pd; 0,S=1< S, 0. (@D
& pE w(pE + p) Sg

where the summation convention on repeated indices has been applied,
and p is the density, u; the velocity vector, E = u;u;/2 + e is the specific
total energy, e is the specific internal energy, and p is the pressure. S,,
Sui, and Sg are source terms that arise from the application of the method
of manufactured solutions, used for verification; these source terms are
zero when computing practical engineering problems. The system is
closed with the ideal gas law equation of state

p=pe(y—1), (2

where y is the ratio of specific heats. The exact form of the equation of
state is of secondary importance for this work, in principle any analytic
or tabular equation of state could be used.

4. The flow solver

This section describes discretization in space (Section 4.1) and time
(Section 4.2), and flux-corrected transport (Section 4.3). The method is
based on a continuous Galerkin finite element method for linear
tetrahedra.

4.1. Discretization in space

To arrive at a continuous Galerkin finite element method we start
from the weak form of the governing Eq. (1),

oU  OF;
/N<0t _,'_a—x]—s)dgio, v=12..n, @)

which requires that the error in the numerical solution, sampled at n
discrete points, v, using the weighting functions NV, vanish on the whole

Advances in Engineering Software 160 (2021) 102962

domain, Q, in an integral sense. Numerically approximating the solution

as U~ N¥ ﬁw, where U,, denotes the unknowns at the discrete node w,
leads to the Galerkin weak statement

A

Integrating the flux term by parts, neglecting the resulting boundary>
integral (assuming zero flux on the problem boundary), and applying

d
0/‘

Pt —F;(N'U,) -S(N"U,) [d@ = 0. “@

F(N*U,) ~ N*F,(U,,) and S(N*U,,) ~ N¥S(U,,) see [3], yields the final

weak form for the whole domain, Q,

/ NVN“deU“ / N"dQ on? F(U,) - / N'N*dQS(U,) = 0. 6)
j Q

All integrals in Eq. (5) are evaluated by breaking up the domain, Q, into
sub-domains as a sum over integrals over discrete elements, Q,,

+ZZ/N‘N”dQS V)5 6)

where the inner summation is over points w forming Q, (gather) and the
outer summation is over tetrahedra Q. connected to point v (scatter).
Eq. (6) results in the following semi-discrete system of equations

M.U, =r(U), @)

where the comma denotes a derivative. The size of the consistent mass
matrix M, is n x n, where n is the number of nodes of the computational
mesh. According to the sum in Eq. (6), only those elements contribute to
a given row v of M, which contain node v (scatter), thus M, is sparse.

4.2. Discretization in time

Eq. (7) is discretized in time using a Lax-Wendroff (Taylor-Galerkin)
scheme [5-7] implemented using two stages:
At 0

v =2 2w

At
[7n+l/2 U lm
2 2 Ox;

At

0
AU =0 - U= MU = 7Ata—F/-(U"“/2) + ArS(UT?). (8)

Xj

The above scheme combined with linear shape functions is identical to a
two-stage Runge-Kutta Galerkin finite element method, and thus central
differencing without damping. Stabilization is obtained by using con-
stant shape functions for the half step solution where the gather results
in element quantities, followed by a scatter step using linear shape
functions resulting in nodal quantities. Assuming linear tetrahedra, the
combined spatial and temporal discretization that achieves this yields
the following staggered scheme [3],

~n W n A 1
Ui = 4 v 2 0(;\/ +_t_25

w=1
ON
/ N'N"dQ,AT, 7At/ 7[? (Ur17)dg, +At/ N'S(UF)de,
Q eweg o, 0x; 7
)
where UZH/ 2 is the vector of element-centered solutions at the half step.

Note that the first step discretizes the flux integral before integration by
parts, Eq. (4), while the second one after integration by parts, Eq. (5),
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hence the difference in sign.

4.3. Flux-corrected transport

Flux-corrected transport (FCT) is a solution to circumvent the
consequence of Godunov’s theorem [8], which states that no linear
scheme of order greater than 1 will yield monotonic solutions. Accord-
ingly, FCT is a nonlinear scheme that combines a high-, and a low-order
scheme using limiting.

In the FCT scheme we use, the high-order solution at the new time
step can be written as

U =U"+ AU =U" + AU' + (AU" - AU') = U' + (AU" — AU'),
10

where AU" and AU' denote the solution increments of the high-, and
low-order schemes, respectively. In Eq. (10), it is the last term that is
limited in a way to avoid spurious oscillations as

U = U+ lim(AU" — AU'). an

The high-order scheme scheme, given in Eq. (9), is symbolically written
as

M AU" =r. 12)

From Eq. (12) we construct a low order scheme by lumping the mass
matrix and adding mass diffusion

MAU =r+d=r—c,(M,—M,)U 13)

where M; is the lumped mass matrix and ¢, is a diffusion coefficient.
Using ¢, =1 guarantees a monotone low order solution, [3]. If we
rewrite Eq. (12) as

MAU" = r + (M, — M,) AU, a4

the difference between the right hand sides of the high and low order
schemes can be recognized as

AEC = AU" — AU' = M, ' (M; - M,) (c;U" + AU"), (15)

also called as the anti-diffusive element contributions (AEC). The AEC is
then limited, C,-AEC, and applied to advance the solution to the next
time step using Eq. (11), where 0 < C, <1 is the limit coefficient for a
given element e.

4.4. The limiting procedure

The limiting procedure to compute C, closely follows [4]. The
description here is given in terms of how the algorithm is broken up into
computational tasks to prepare for the discussion on task-parallelism
later.

Task Left-hand side (LHS)

Eq. (6) shows that the LHS is the consistent mass matrix. M. is
lumped by summing the rows to the diagonals. Inverting M, distributed
across computers would be costly. Using a lumped (diagonal) matrix
instead reduces computational cost and software complexity at the cost
of some additional numerical error but does not reduce the order of
accuracy of the method [3]. If the mesh does not move and its topology
does not change, the LHS needs no update between time steps.

Task Right-hand side (RHS)

The high-order right hand side is computed by the two-step pro-
cedure given by Eq. (9). Since the two steps are staggered, the gather
takes information from nodes to cell centers, followed by a scatter,
moving information from cells to nodes, both steps are contained within
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a single right hand side calculation within a time step. Within the two
steps there is no need for parallel communication as an element always
resides on a given mesh partition and only mesh nodes are shared be-
tween processing elements (PEs), whose solution values are
communicated.

Task Diffusion (DIF)

A step of the limiting procedure is to compute the mass diffusion
term in Eq. (13). Using linear tetrahedra, this is given for each element
by

-3 -1 -1 -1
cto | -1 =3 -1 -1

_[(’T(M[ - Ml')]e - _120 -1 =1 =3 -1/’ (16)
-1 -1 -1 =3

—_— = = .
where J, = BA-(CA xDA) is the element Jacobian, computed from the
triple product of the edge vectors of the tetrahedron given by vertices A,
B,C, and D.

Task Anti-diffusive element contributions (AEC)

Another step is to compute the anti-diffusive element contributions,
given in Eq. (15), for each element. For this M; — M is given in Eq. (16),
and the inverse of the lumped mass matrix, M;! is obtained from the
nodal cell volumes, computed by summing the quarter of each tetra-
hedron element volume to nodes. Once the AECs are computed for each
element, the next immediate step is to sum all positive (negative) anti-
diffusive element contributions to node i

P = Z{ max }(07 AEC,). a7

min

Task Allowed limits (ALW)
The limiting procedure requires the maximum and minimum nodal
values of the low-order solution, U', and the previous solution, U,

U - {max}(Ug7U,l)' 18)

min

Another alternative is to only consider the low order solution, U;, when
computing the allowed solution bounds, which leads to the so-called
“clipping limiter” in place of Eq. (18): U; = UL This is followed by
computing the maximum and minimum nodal values of all elements,
% max * * * *

U, = { min }(UNUB,UC.UD), 19
then computing the maximum and minimum unknowns of the elements
surrounding each node,

max

U = {macd (v, (20)

The limit coefficients will be computed (see below) based on Pii and the
maximum and minimum increments and decrements the nodal solution
values are allowed to achieve,

max

QFf =y;mn — UL 21

Task Limit coefficients (LIM)
Defining the ratios of positive and negative element contributions for
each node i that ensure monotonicity as

Rf =

i

. + [ pt + —
{mln(l,Q[ /PE) P >0> P 22

1 otherwise

the limit coefficient for each element is taken as the most conservative
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ratio
[RF AEC>0
C, =min{ " . (23)
iec. | Rf AEC <0
The limited AEC is then scatter-added to nodes
Ai = C.-AEC. (24)

i€Q,

Task Applying the limiter (APPLY)
The limited AEC is applied to the low-order solution according to Eq.
(1D,

Ut = Ul + A, (25)

The above procedure is general, works on the numerical solution
(instead on fluxes or slopes), and written as the same procedure for each
scalar of a system of equations. This works well for independent scalars,
but for a coupled system additional techniques have been developed to
reflect the coupled nature of the equations in the limiting procedure, see
also [3,4,9]. In particular, we have experimented with Lohner’s ’indi-
cator variable’ approach, which designates a physical variable, e.g.,
density, whose limit coefficient other variables inherit in a cell, as well
as applying a minimum of the limit coefficients for all or some of the
conserved variables. These techniques tend to produce better results for
some problems while worse for others — in any case, such a priori
knowledge of the problem computed is beneficial towards obtaining
improved numerical solutions.

5. Software design and implementation

This section discusses various software implementation details of the
flow solver described in Section 4. The implementation uses Charm++
as the parallel programming paradigm. The entire problem, in this case
the computational mesh, is broken up into multiple chares. Chares can be
thought of as data and associated functions that operate on them, as in
any object-oriented programming paradigm. In code, a chare is repre-
sented by a C++ class. Since each chare holds a different partition of the
mesh and associated data, this is simply the realization of the divide and
conquer paradigm. Chares communicate with each other via message
passing. Up to this point there is nothing new or special compared to any
other code relying on a distributed-memory paradigm, e.g., the message
passing interface (MPI).

In the following sections we give a brief overview of the major fea-
tures of the Charm++ runtime system, followed by discussion on those
specific features, used by the flow solver, that significantly differentiate
this from other distributed-memory implementations. Finally, the main
steps of the algorithm and its implementation are outlined.

5.1. An overview of Charm++

Charm++ is a general-purpose production-grade many-tasking
programming framework, runtime system, and ecosystem of libraries
for modern high-performance computing systems, [10-14]. It offers
high productivity and performance portability through features such as
multicore and accelerator support, dynamic load balancing, fault
tolerance, latency hiding, interoperability with MPI and OpenMP, and
online job-resizing. Charm++ has been developed and maintained by
the Parallel Programming Laboratory at the University of Illinois at
Urbana-Champaign for 20+ years. It is similar to MPI in the sense that it
allows writing high-performance applications for the largest
distributed-memory computers. The important differences and main
advantages of Charm++ over MPI are

e Fully asynchronous execution model, allowing arbitrary overlap of
computation and communication
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Task-parallelism, scheduling parts of an algorithm independently of
or dependent on each other

Automatic load balancing, redistributing computational load by
migration of work units based on real-time CPU load measurement
Automatic checkpointing and fault tolerance, allowing restart with
differing number of work units and resizing jobs on the fly instead of
interruption

Support for power-, and energy-aware computation, by intelligent
work redistribution based on, e.g., CPU frequency scaling or
temperature

Interoperability with MPI, OpenMP, CUDA, from C++, Fortran, and
Python

For more information on Charm-++ see http://charmplusplus.org
and for publications see http://charm.cs.illinois.edu/papers.

5.2. Communication with message passing in Charm-++

In a Charm++ program, data and work-units (chares) interact via
asynchronous function calls. Communication via message passing is
realized by special class member functions, called entry methods. Entry
methods differ from ordinary member functions in that they can be
called remotely, by using the chare array handle addressed by the chare
id and its member function to call. Function arguments to such entry
methods can be of any standard or custom type. If the target of the chare
happens to reside on a remote compute node, the runtime system seri-
alizes the function arguments into a byte stream, sends it across the
network, unpacks it on the other side, and puts the function call into the
local queue of the target processor. Different functionality (with asso-
ciated data) is divided into a chare array of such objects, thus an algo-
rithm is realized by a dynamically interacting arrays of chares. As an
example, Listing 1 compares asynchronous message passing in MPI and
Charm++, displaying code used to send and receive arrays whose size is
only known at runtime and can be different on different chares/ranks,
characteristic of unstructured-mesh solvers. In Charm-++ point-to-point
communication is done via such asynchronous entry-method function
calls.

The implementation (declaration and definition) of entry-method
member functions, such as fn(...) in Listing 1, do not differ in any
way from usual C++ (non-entry) methods. Such functions are, however,
labeled as entry methods in Charm-++ interface files, commonly with
extension .ci, as shown in Fig. 1. While the examples listed in Listing 1
send and receive a simple standard C++ vector (a contiguous-storage,
dynamically-resizable, array), Charm++ also allows asynchronously
sending and receiving arbitrarily complex custom-built data structures
this way as well without measurable performance penalties, compared
to floating-point calculations, as will be shown. Since the underlying
programming paradigm of Charm++ is higher level than MPI + X
(where X stands for some form of threading, e.g., OpenMP or CUDA), in
Charm++ distributed-memory sends and receives may operate on (safe)
custom data structures (instead of low-level byte-streams), e.g., con-
tainers built from C++ standard library vectors, trees, hash maps, or
arbitrary user-defined data types. In Section 7 we demonstrate that
communication using such high level data structures yields an insig-
nificant performance hit compared to computation.

5.3. Problem decomposition in Charm+-+

It is important to appreciate that in Charm++ programs one usually
does not address hardware elements, e.g., CPUs or threads. Instead,
chare arrays elements have an ID, an integer by default. This makes
sense, since the runtime system may migrate chares (and their data)
from one compute node to another during computation to perform load
balancing. Such migration is based on real-time load measurement and
is transparent to the application. The runtime system dynamically and
automatically adapts the computational load, monitoring load-
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// Non-blocking send and receive with MPI,
0) {
MPI_Request req;

if (rank ==

// Send a message to rank 1

MPI_Isend(arrl, n, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD, &req);

// Do mnot forget to complete the request!

MPI_Wait (&req, MPI_STATUS_IGNORE);

}
else if (rank == 1) {
MPI_Status status;
// Wait for a message from rank O with tag O
MPI_Probe (0, 0O, MPI_COMM_WORLD, &status);
// Find out the number of elements in the message -> size goes to "n"
MPI_Get_count (&status, MPI_DOUBLE, &n);
// Allocate memory
arrl = malloc(n*sizeof (double));
// Receive the message. ignore the status
MPI_Recv(arrl, n, MPI_DOUBLE, O, O, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
/] mmmmmmm s

// Non-blocking send and receive with Charm++
using namespace std;

// on rank O: create & fill array a
vector<double> a{...};

// send array a

object [1].fn(a);

// on rank 1:

receive array

void Object::fn( const vector<double>% a ) { // use array a }

// Member function labeled as a Charm++ entry method for receiving a
// variable-size array in a Charm++ interface file, Object.ci
array [1D] Object {

entry void fn( const vector<double>& a );

};

source: https://stackoverflow.com/a/14051503

Listing 1. Non-blocking send and receive of a variable-length array with MPI and Charm++.

imbalance, and can also migrate data and work-units if it notices that a
compute node failed or is about to fail, enabling fault tolerance.
Similar to other distributed-memory solvers for unstructured
meshes, after reading the mesh from computer file to memory, it is
partitioned, usually by a coordinate-, or a graph-based partitioner.

shown in Section 7.

mesh partitions which may improve cache utilization, and (2) finer-
grain work units may be load-balanced more efficiently, as will be

However, the number of mesh partitions does not have to equal the
number of PEs. Experience shows that such overdecomposition (or virtu-
alization), i.e., significantly more work units (mesh partitions) than the
available number of PEs, can be beneficial, especially with load
balancing. While overdecompositon increases communication costs, it
also comes with benefits: (1) useful computation happens on smaller

5.4. MPI interoperation and processor-aware collections

The Charm++ paradigm is the single abstraction our implementa-
tion uses. We also rely on a number of third-party libraries some of
which require MPL. This is not a problem with Charm++ as Charm-++-
code can seamlessly interoperate with MPI-only libraries. There are
various ways Charm++ and MPI code can interact within a single
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// DAG logic specified in Charm++ .ci file

array [1D] Object {

\/

entry void waitdc () {

when a_complete(), b_complete() serial { c(); } };

entry void a_complete();

entry void b_complete();

};

Fig. 1. Left: Structured DAG expressing a simple logic of task A and B must finish before task C can start. Right: Charm++ SDAG code expressing the logic on the left.
Here a_complete () and b_complete () are member functions of Object that are implemented by the runtime system, used to trigger the completion of task A
and B, respectively. The runtime system monitors the completion of tasks A and B, and only when both are complete will it call member function c ().

application. We invoke library calls that contain direct MPI calls from
Charm++ chare groups. Chare groups are similar to chare arrays with
the important differences that there is a guaranteed single group
element per physical processor and group elements never migrate. This
enables invoking calls by MPI libraries from groups that otherwise know
nothing about their environment.

In particular, the flow solver uses Zoltan2 [15] for initial mesh
partitioning (which supports multiple types of partitioners in parallel as
well as overdecomposition), and ExodusII [16] (used for mesh and field
solution output to files in parallel). Using existing libraries thus allows
building on the specific expertise of their authors.

Besides groups, another type of processor-aware chare collection in
Charm++ is a nodegroup. Node groups are similar to groups (e.g., they
do not migrate) but a node group is a collection of chares with one chare
per process or logical (e.g., compute) node. Thus node groups allow writing
code that must be executed on a compute-node basis. An example is
N-to-M file 1/0, which allows, for example, efficiently reading a large
mesh from file to memory on N<M (instead of M) compute nodes. This
can be used to optimize I/0 performance if N is the number of I/O nodes
and M is the number of compute nodes on a large cluster. This is how our
flow algorithm reads in its input computational mesh, which is followed
by mesh partitioning and cell/node redistribution based on the output of
the mesh partitioner.

5.5. Task-parallelism

Task-parallelism is a parallel programming technique used to express
parts of an algorithm as a graph of connected or independent tasks.
Besides the ubiquitous divide-and-conquer (data-parallelism), task-
parallelism has been recently gaining popularity [17], complementing
data-parallelism, to increase the degree of overlap among various tasks
of an algorithm.

In Charm++ task-parallelism is expressed via its structured DAG
(SDAG) functionality, where DAG stands for Direct Acyclic Graph. DAGs
are used to identify dependencies among individual tasks of an algo-
rithm, represented by graph nodes. A DAG in Charm++ is expressed by a
simple language extension, specified in the Charm++ interface (.ci)
file, that allows expressing the logic of interdependence among tasks.
There may be different and multiple DAGs within a Charm++ chare
array (class) definition. Each array element represents a different C++
class instance, holding its own data, e.g., a partition of the computa-
tional mesh and the solution. Execution of the algorithm within a single
chare object instance is generally independent of execution within
another chare array element.

An example of a simple DAG may consist of tasks 2, B, and C. Then if
task A and B must both finish before C can be started, a DAG that ex-
presses this logic within Charm++ is given in Fig. 1. Besides separating

* _complete () member functions by a comma, SDAG constructs also
support more advanced control flow specifiers, such as for, while, and
case statements. Using Charm++ SDAG code, fairly complex applica-
tion logic can be expressed.

5.6. Flow algorithm software design using Charm++: setup

We are now in a position to describe the main steps of the flow al-
gorithm in Section 4. The setup consists of the following main steps:

1. Read user input (from command-line arguments and an input text
file)

2. Read the mesh in parallel (one linear chunk per compute node from a
single file)

3. Pass the linearly-distributed mesh to a mesh partitioner allowing
overdecomposition

4. Redistribute the mesh (cell connectivity and coordinates) based on
the distribution from the partitioner

5. Compute nodal communication maps in parallel

6. Create migratable chare arrays holding a mesh partition (connec-
tivity, coordinates, nodal communication map, and solution arrays)

Except for Step 1 above, all steps are parallel and no assumption is made
on the size of the input mesh, e.g., that it must fit into the memory of a
single compute node. All steps above are common in distributed-
memory implementations of unstructured-mesh solvers, except our
Charm++ implementation is fully asynchronous and puts data in
migratable chare arrays. In the following we describe Step 5 in some
detail, since a scalable distributed-memory implementation of
computing the nodal communication maps appears less than straight-
forward with the constraint that the mesh cannot be loaded to a single
compute node’s memory.

5.7. Computing the nodal communication maps in parallel

Until Step 5 during setup, only the mesh connectivity graph and the
node coordinates are known on each chare. From this information our
task in Step 5 is to compute the nodal communication map in a scalable
fashion in parallel. No information is available on which chare might
store the list of nodes that other chares share and we cannot assume that
the entire mesh can fit into the memory of a single compute node. Any
approach that singles out a master communicating with slaves will not
scale. Additionally, we would like to minimize the amount of data that
must be sent across the network during setting up the node communi-
cation map. A nodal communication map on each partition (chare) is
required for any distributed-memory unstructured-grid solver that
stores the solution unknowns at mesh nodes. On each chare such a map
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//storage for nodal communication map for each chare (mesh partition)
std :: unordered_map < int, std :: vector < int >> nodeCommMap;

associates a list of node IDs to a chare ID a given chare shares nodes with.
The map must store a (different) list of nodes for each of potentially
multiple other chares it shares at least a single node with. Using the
standard library in C++ such a map can be implemented using a map of
vectors:At this point, the node communication map, \begin{verbatim}
nodeCommMap\end{verbatim} is a dynamic but empty unordered
(hash) map. Unordered maps are standard associative containers in C++
that contain key-value pairs with unique keys. In the map the keys are
the chare IDs the given chare shares a list of nodes with and associated to
each key (the value) is a vector of integers (a standard, continuous-
storage, resizable array that knows its size). Search, insertion, and
removal of elements of unordered maps have guaranteed average
constant-time algorithmic complexity. Internally in a hash map, the el-
ements are not sorted in any particular order, but organized into
buckets. Which bucket an element is placed into depends entirely on the
hash of its key. This allows fast access to individual elements, since once
the hash is computed, it refers to the exact bucket the element is placed
into. This is an efficient data structure for dynamically and frequently
changing data.

5.7.1. Step 1: query

One way to accomplish computing the nodal communication map in
a distributed-memory setting that is scalable and performant is to build
the map in two steps: (1) query and (2) response. Before the query each

chare collects a list of boundary nodes from its mesh partition. A node is
on a chare boundary if it belongs to a face of a tetrahedron that has no
neighbor element at one of its faces. The list of boundary nodes can be
computed using an algorithm that relies on standard data structures, e.
g., elements surrounding points, derived from unstructured meshes [3,
18]. Once the boundary nodes are computed, they are categorized into
bins that will be sent to different chares to build the node communica-
tion map across all chares. The binning is determined by the node IDs
and assigned to chares in a linear fashion. The nodes in each bin are then
sent to the chare a given bin is assigned to. Note that the nodes in the
bins are independent of their final destination: the target chare will
merely be responsible for assembling the communication map for the list
of nodes in the bins it is responsible for. Sending and receiving the node
lists in bins avoid expensive collectives that would involve all chares and
only entail point-to-point communication with data involving only a
subset of the mesh boundary nodes. Since the boundary nodes are
uniquely assigned to bins, no boundary node is sent to multiple chares,
which keeps communicated data to a minimum. The chares receiving
the boundary nodes in bins store them in two maps that are the inverse
of each other:

// chare, inner key:
// nodes shared with neighbor chare.

std::unordered_map< int, std::map< int,

for (const auto& [neighborchare,bndnodes]

auto& e = explneighborcharel;
for (auto n bndnodes)
for (auto d find_value_of (m_nodech,n))
if (d != neighborchare)

e[d].insert (n);

for (const auto& [ targetchare, bndnodes ]

thisProxy[ targetchare ].bnd( thisIndex,

// Storage for sending back categorized communication maps.

chare neighboring the target chare,
std::
// Compute node communication map to be sent back to chares
chnode) {

// insert neighbor chare

// for all boundary nodes of neighbor chare

// find and loop over all boundary nodes

// Send node communication maps to chares that

bndnodes );

Outer key: target

value: unique set of

unordered_set<int> > > exp;

ID as outer key

in node->chare map

issued a query to this chare

exp)

Listing 2. Response step following the query step in building the nodal communication maps. Besides showing the algorithm used to categorize the nodal
communication maps by target and neighbor chares, this listing is also an example of how sending a complex data structure using Charm++ looks like in verbatim, i.
e., not pseudo, code: The last two lines perform a for loop to send, in a point-to-point fashion, an integer (the sender chare ID, thisIndex) and the nodal
communication map needed by targetchare, bndnodes, a std: :map whose key is an integer and value is a hash set. Here std: :map is a standard sorted
associative container that contains key-value pairs with unique keys. Keys are sorted by using a comparison function. Search, removal, and insertion operations in
such maps have logarithmic complexity as maps are usually implemented as red-black trees. The std: :unordered_set (or hash set) is also a standard C++
associative container that contains a set of unique objects of type of its key. Search, insertion, and removal in such sets have average constant-time complexity.
Internally, in unordered sets the elements are not sorted in any particular order, but organized into buckets. Which bucket an element is placed into depends entirely
on the hash of its value. This allows fast access to individual elements, since once a hash is computed, it refers to the exact bucket the element is placed into.
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// DAG logic specified in diagcg.ci
array [1D] DiagCG {

entry void wait4rhs() {
ownrhs comrhs

NS

solve

serial { solve( dif ); } }

entry void ownrhs_complete( tk::Fields& dif )

entry void comrhs_complete ();

};

//Node— > chare map

std :: unordered _map < int, std :: vector < int >> nodech;
//Chare— > node map, the inverse of nodech

std :: unordered map < int, std :: vector < int >> chnode;

where nodech associates chares (value) to nodes (key), while chnode
associates nodes (value) to chares (value). These data structures are
small, temporary, and will be thrown away after the response step.

5.7.2. Step 2: response

Once all chares have received their assigned bins, the response step
starts by computing the communication map for each boundary node.
Since nodech and chnode only contain data on queried nodes and this
data originates from source chares that have these nodes, these inverse
maps already contain the communication maps that we need. Thus we
only have to categorize the maps by source chare. The response step is
given in Listing 2. The algorithm categorizes the nodal communication
maps by the querying source chare and prepares the hash map exp for
sending the maps back. The syntax uses C++ structured bindings and
range-based for loops for readability; note that this is actual code lifted
from the source. The last step in Listing 2 is to send the categorized maps
back to the source chares. The object thisProxy is a Charm++ handle
to the Charm++ chare array collection this code is implemented in.
Using array-like indexing into the collection itself, thisProxy[tar-
getchare] .bnd (. ..) makes a call to the target chare array element
and invokes its member function bnd (), an entry method, packing its
arguments and sending them across the network if the targetchare
happens to be on another compute node. Here thisIndex stands for
the chare ID of the sender, so that the receiver knows where the
contribution came from. The communication step in the response step is
similar to that of in query, point-to-point and sending minimal data for
boundary nodes. Node communication maps are computed only for
those chares that queried the map from the given responding chare. The
boundary nodes can also be thought of as a distributed table and each
chare only works on a chunk of it. Note that a chare only sends data back
to those chares that have queried the chare.

5.8. Flow algorithm software design using Charm++: time stepping

The last step of the setup phase, enumerated in Section 5.6, is to
create the Charm-++ chare arrays, designed to perform the time

when ownrhs_complete( tk::Fields& dif ), comrhs_complete ()
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Fig. 2. Left: Structured DAG expressing the logic of
computing and communicating the RHS and the
mass diffusion term. Both ownrhsand comrhs
must finish before solve can start. Right
Charm-++ SDAG code expressing the logic on the
left. Only when both own and contributions to the
boundary nodes are complete on a given chare will
the runtime system call the member function
solve (). Note the function argument passed to
ownrhs_complete (). This is allowed by
Charm-++ even though the runtime system imple-
ments the body of this function. This is used here to
pass through the diffusion term di £ directly to the
DiagCG: : solve (), which avoids having to store
this data in Di agCG’s state, reducing its size, which
is advantageous for migration as well as check
point/restart.

stepping. These chare arrays are migratable and bound. Bound arrays in
Charm++ always migrate together while allowing separating different
functionality and associated data. The important chare classes that
interoperate during time stepping are

e Transporter (single chare, driver),

e Discretization (chare array, generic unstructured-grid solver
base class),

e DiagCG (chare array, child class to Discretization, specialized
to the node-centered continuous Galerkin finite element discretiza-
tion scheme with a lumped-mass left-hand side and flux-corrected
transport combined with Lax-Wendroff-like explicit time stepping
scheme, discussed in this paper), and

e DistFCT (chare array for distributed-memory flux-corrected trans-
port, used by DiagCG)

The base Discretization and child DiagCG classes facilitate the
well-known object-oriented design feature, runtime polymorphism. This
enables code reuse and helps code generic to all types of discretizations
stay uniform and code specific to a given discretization stay modular.
Such a design is particularly useful when more than a single type of
hydrodynamics schemes a