
Research Paper

The International Journal of High
Performance Computing Applications
2023, Vol. 37(5) 465–486
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420221143775
journals.sagepub.com/home/hpc

Parthenon—a performance portable block-
structured adaptive mesh refinement
framework

Philipp Grete1,2, Joshua C Dolence3,4, Jonah M Miller3,4, Joshua Brown5,6,
Ben Ryan3,4, Andrew Gaspar5, Forrest Glines2, Sriram Swaminarayan5,
Jonas Lippuner3,4, Clell J Solomon7, Galen Shipman5, Christoph Junghans5,
Daniel Holladay5, James M Stone8 and Luke F Roberts3

Abstract
On the path to exascale the landscape of computer device architectures and corresponding programming models has
become much more diverse. While various low-level performance portable programming models are available, support at
the application level lacks behind. To address this issue, we present the performance portable block-structured adaptive
mesh refinement (AMR) framework PARTHENON, derived from the well-tested and widely used ATHENA++ astrophysical
magnetohydrodynamics code, but generalized to serve as the foundation for a variety of downstream multi-physics codes.
PARTHENON adopts the KOKKOS programming model, and provides various levels of abstractions from multidimensional
variables, to packages defining and separating components, to launching of parallel compute kernels. PARTHENON allocates all
data in device memory to reduce data movement, supports the logical packing of variables and mesh blocks to reduce
kernel launch overhead, and employs one-sided, asynchronous MPI calls to reduce communication overhead in multi-node
simulations. Using a hydrodynamics miniapp, we demonstrate weak and strong scaling on various architectures including
AMD and NVIDIA GPUs, Intel and AMD x86 CPUs, IBM Power9 CPUs, as well as Fujitsu A64FX CPUs. At the largest scale
on Frontier (the first TOP500 exascale machine), the miniapp reaches a total of 1.7 × 1013 zone-cycles/s on 9216 nodes
(73,728 logical GPUs) at ≈92% weak scaling parallel efficiency (starting from a single node). In combination with being an
open, collaborative project, this makes PARTHENON an ideal framework to target exascale simulations in which the
downstream developers can focus on their specific application rather than on the complexity of handling massively-parallel,
device-accelerated AMR.

Keywords
Adaptive mesh refinement, performance portability, high-performance computing, parallel computing

1. Introduction

Many open problems in physics involve vastly
varying length- and time-scales. Some examples, drawn
from astrophysics, include the deposition and redistribution
of energy from active galactic nuclei (Bourne and Sijacki
2021; Glines et al., 2020; Meece et al., 2017; Prasad et al.,
2020) relativistic accretion flows around compact objects
(Miller et al., 2019b, 2020; Ryan et al., 2018; Ressler et al.,
2020), the in-spiral and merger of neutron stars and black
holes Alcubierre (2008); Miller and Schnetter (2016), and,
more generally, turbulence simulations (Federrath et al.,
2021; Grete et al., 2021b).

From a computational point of view, simulating these
problems involves solving (various types of) partial

1University of Hamburg, Hamburger Sternwarte, Germany
2Department of Physics and Astronomy, Michigan State University, East
Lansing, MI, USA
3Computational Physics and Methods, Los Alamos National Laboratory,
Los Alamos, NM, USA
4Center for Theoretical Astrophysics, Los Alamos National Laboratory,
Los Alamos, NM, USA
5Applied Computer Science, Los Alamos National Laboratory, Los Alamos,
NM, USA
6National Center for Computational Sciences, Oak Ridge National
Laboratory, Oak Ridge, TN, USA
7Eulerian Codes, Los Alamos National Laboratory, Los Alamos, NM, USA
8School of Natural Sciences, Institute for Advanced Study, Princeton, NJ,
USA

Corresponding author:
Philipp Grete, Hamburg Observatory, University of Hamburg,
Gojenbergsweg 112, Hamburg 21029, Germany.
Email: pgrete@hs.uni-hamburg.de

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420221143775
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-3555-9886
https://orcid.org/0000-0003-4353-8751
https://orcid.org/0000-0001-6432-7860
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0002-6837-8195
https://orcid.org/0000-0001-6297-2145
https://orcid.org/0000-0003-0925-1458
https://orcid.org/0000-0002-0673-9741
mailto:pgrete@hs.uni-hamburg.de
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420221143775&domain=pdf&date_stamp=2022-12-13

differential equation—often on a structured grid using finite
volume or finite difference methods. However, given the
physical scale separation these problems typically cannot be
globally represented in simulations—even on the next
generation, exascale supercomputers. One option to make
these kinds of simulations feasible is the use of (adaptive)
mesh refinement (AMR), that is, a mesh that increases the
spatial resolution in regions of interest. AMR frameworks
using varying refinement approaches have successfully
been used for many years. These include refinement based
on individual cells, for example in RAMSES (Teyssier,
2002) or XRAGE (Gittings et al., 2008), based on separate
patches (of arbitrary shape and size), for example, by Berger
and Colella (1989) implemented in ENZO (Brummel-Smith
et al., 2019) and PLUTO (Mignone et al., 2011), or based on
blocks of fixed size, for example, as in PARAMESH (MacNeice
et al., 2000). With respect to parallelization all these
“legacy” frameworks are primarily concerned with handling
the mesh (and its refinement) across multiple nodes in
parallel, see, for example, Dubey et al. (2014) for a com-
parative review. Given that they were developed prior to the
broad availability of accelerators/GPUs, the additional
levels of parallelism and memory hierarchy provided by
these devices are typically not leveraged. This prevents an
efficient use of those frameworks on many next generation,
exascale supercomputers.

From a technical point of view, achieving sustained
application-level exascale performance will require maxi-
mizing concurrency throughout the application while si-
multaneously minimizing the impact of data movement
within the system. Both issues will be significantly more
challenging at exascale than they are on today’s petascale
systems: Amdahl’s law will require ever more levels of
parallelism to be exploited in applications to remove or hide
even small sequential bottlenecks. At the same time,
technological trends will continue to increase the expense of
data movement relative to compute for most applications as
well as introduce more dynamic performance characteristics
due to power capping and highly tapered network topolo-
gies. An additional challenge is that applications will need
to achieve this level of performance on two or more radi-
cally different system architectures, as typified by the
current Summit (IBM/Nvidia) and Frontier (AMD), and
future El Capitan (AMD) and Aurora (Intel) systems. These
requirements are pushing applications to consider new
programming approaches such as additional hardware ab-
straction layers, and/or compositions of task-based and data
parallelism.

In general, the combination of accelerated nodes (with
large amounts of device memory and different architectures)
and the complexity of AMR introduces new compuational
challenges. For example, handling many (even up to thousand
of) blocks per device with even more compute kernels—
especially when small block sizes are involved—can result

in significant overheads both with respect to managing the
mesh hierarchy as well as with respect to the cumulated
kernel launch latency.

To address these challenges, we introduce the perfor-
mance portable block-structured adaptive mesh refinement
framework PARTHENON. It is built on the basis of ATHENA++

(Stone et al., 2020) and K-ATHENA (Grete et al., 2021a) and
hides the complexity of AMR and device computing in
downstream codes by providing high-level abstractions.
These high-level abstractions not only pertain to the han-
dling of the mesh and its data but also address computational
complexity, such as parallel execution. To exploit on-node
data parallelism, PARTHENON internally uses the performance
portability programming model KOKKOS (Carter Edwards
et al., 2014; Trott et al., 2021). This way PARTHENON inherits
the KOKKOS capability to target various device architectures
using a single source code and programming model. To
further increase data parallelism, PARTHENON also supports
various levels of logical packing of data structures such as
variables or even entire blocks, which are always allocated
in device memory to minimize data transfer. To exploit
inter-node parallelism, PARTHENON internally uses asyn-
chronous, one-sided (GPU-aware) MPI calls using buffers
located in device memory.

Naturally, the PARTHENON collaboration is not the only
collaboration who has identified the various numerical and
computational issues of “next generation” AMR frame-
works. For example, AMREX (Zhang et al., 2021) shares
many design decisions with PARTHENON including data
containers and abstraction for parallel regions. Key dif-
ferences to PARTHENON are the more flexible mesh structure
in AMREX (at the cost of increased complexity) and a self-
contained performance portability layer rather than relying
on an external library such as KOKKOS. Another example is
UINTAH (Holmen et al., 2017), which, as a legacy asyn-
chronous many-task runtime system for block-structured
AMR, also adopted KOKKOS internally as performance
portability layer below an intermediate abstraction layer.
While PARTHENON also offers a flexible, asynchronous
tasking system, it is operating at the block level whereas
UINTAH tasks can be more fine-grained following a directed
acyclic graph. However, to our knowledge the impact
performance of the interplay of fine-grained tasks with
(many) kernel launches and large number of blocks per
device is still an open question. This similarly applies to
other asynchronous many-task runtime systems such as
CHARM++ who also start to incorporate GPU support (Choi
et al., 2022). One framework using AMR built on top of
CHARM++ is QUINOA (Bakosi et al., 2021) that just started to
use GPUs. Finally, GAMER-2 is astrophysical, multi-physics
code with support for GPU-accelerated AMR (Zhang et al.,
2018). It differs from PARTHENON by being a fully integrated
code (physics and mesh) rather than an AMR framework
and supporting only CUDA (i.e., Nvidia GPUs).

466 The International Journal of High Performance Computing Applications 37(5)

Moreover, in GAMER-2 all data structures are allocated in
host memory so that data required in compute kernels is
constantly transferred back and forth between host and
device memory.

In the following, we first provide a brief background on
block-structured AMR and KOKKOS in Section 2 before
introducing the key design aspects and features of PAR-
THENON in Section 3. In Section 4, we provide an overview
of various downstream applications that are built on top of
PARTHENON including the PARTHENON-HYDRO miniapp. The
latter is used in Section 5 to present different performance
characteristics of PARTHENON pertaining to the packing of
variables and blocks as well as to weak and strong scaling.
In Section 6, we describe the software engineering approach
taken by the collaboration. Finally, we discuss current
limitations and future enhancements in Section 7 before we
conclude in Section 8.

2. Background

2.1. Block-structured AMR

Only a brief summary of the block-structured AMR algo-
rithm adopted by PARTHENON is given in what follows, a
complete description is given in Stone et al. (2020).

Individual cells that span the computational domain are
grouped into a regular array of subvolumes termed
MeshBlocks. Data associated with the cells on a given
MeshBlock are stored as N-dimensional arrays. PARTHE-
NON provides infrastructure for AMR with both cell- and
face-centered data. The size of these arrays must be the same
on all MeshBlocks, and moreover the overall domain must
contain an integer number of MeshBlocks in each di-
mension. However, the number and size of individual
MeshBlocks tiling the computational domain is arbitrary.

The MeshBlocks themselves are arranged into a
binary-tree (in 1D), a quad-tree (in 2D), or an oct-tree (in
3D). Use of a tree greatly simplifies finding neighbors
(necessary for communicating boundary conditions) and
allows distribution of MeshBlocks across multiple
processers using Z-ordering, which helps improve load
balancing.

For AMR calculations, any number of MeshBlocks can
be subdivided into 2N finer MeshBlocks (prolongation), or
contiguous blocks of 2N MeshBlocks can be joined into
one coarser MeshBlock (restriction), as needed. Figure 1
diagrams how MeshBlocks on a refined grid are stored in
the tree. The tree structure ensures that the neighbors of a
MeshBlock can easily be found, even if they are at dif-
ferent levels of the grid hierarchy. One great advantage of

Figure 1. Labeling of MeshBlocks (top) and their organization into a quadtree (bottom) for an example simulation with mesh
refinement in two dimensions. Reproduced by permission of the AAS from Stone et al. (2020).

Grete et al. 467

this tree structure-based AMR is that any given spatial
location in the domain is covered by one, and only one,
MeshBlock. As a result, only neighbor relationships exist
but no spatial parent–child ones. Thus, except when new
MeshBlocks are created or destroyed, prolongation and
restriction is required only when data is communicated at
MeshBlock boundaries. However, this approach requires
that the entire tree is rebuilt every time (de)refinement is
triggered and MeshBlocks are being destroyed/
constructed in place.

2.2. Kokkos

KOKKOS is an open source, performance portable pro-
gramming model for many core devices implemented as a
C++ template based library (Carter Edwards et al., 2014;
Trott et al., 2021). As such it provides abstractions to le-
verage hardware features, for example, threading or multi-
level memory hierarchies, through various backends. This
allows device-specific optimization at compile time for
devices from various vendors, for example, using the
CUDA backend for NVIDIA GPUs, the HIP backend for
AMD GPUs, or the OpenMP backend for multi-threading
on CPUs.

Some of the fundamental abstractions provided by
KOKKOS include:

· Execution Spaces define where (on which device/
through which backend) a computational kernel (in
practice a function object) is executed.

· Execution Patterns define how individual work items
within a kernel are related. Examples include
Kokkos::parallel_for for independent work
items that can be handled independently in parallel or
Kokkos::parallel_reduce to execute a par-
allel reduction over all work items.

· Execution Policies allow control over how a parallel
region is executed. They can be simple, such as a
RangePolicy that correspond to a single one-
dimensional index for each work item, as well as
nested loops, or they can be complex descriptions
through hierarchical parallelism to control the
grouping of threads and individual threads.

· Memory Spaces define where data is stored, for ex-
ample, on the host or in device memory, or even in
cache-type memory (where supported by hardware).

· Memory Layout allows to specify how data is stored,
that is, how multidimensional indices are mapped to
memory locations.

· Views are the primary data structure provided by
KOKKOS. They correspond to multidimensional arrays
and are parameterized, for example, by a Memory
Spaces and a Memory Layout.

3. Design

3.1. Primary design goals

Many algorithms employed in targeted application domains
have comparatively low arithmetic intensity, for example,
Oð1Þ floating point operations per byte of data moved for
stencil based calculation. At the same time, the peak
compute power of devices has been increasing faster than
the peak memory bandwidth in recent years and is even
worse for the bandwidth between host memory and device
(e.g., GPU) memory. This results in an ever increasing
bottleneck when lots of data needs to be moved. To cir-
cumvent this, PARTHENON follows a device first or device
resident approach in which all work data is allocated in
device memory only. In other words, data movement be-
tween host and devices is reduced to a minimum as the work
data used in (expensive) computational kernels is already
close to the execution space.

Another goal is to hide complexity from a downstream
application point of view. Similar to KOKKOS, which ab-
stracts the complexity of on-node parallel programming,
PARTHENON generally provides additional abstractions to
hide the complexity of multi node, parallel, block-structured
adaptive mesh refinement. This includes simplified loop
abstractions (i.e., setting many default values in the KOKKOS

layer) as well as higher level abstractions such as control
over the packing of individual blocks, communication
between nodes via MPI, a tasking infrastructure, or IO, as
detailed in the following sections. At the simplest level, a
downstream application only needs to provide compute
kernels in plain C++ (i.e., no vendor specific backend) that
are concerned with data of a single block and everything
else is handled by PARTHENON.

Importantly, the underlying access patterns provided by
these abstractions need to change depending on hardware
and must often be tuned for a given problem. To accomodate
this constraint, we expose in our abstraction layers tuning
parameters, allowing us to tune to individual hardware
configurations.

Finally, PARTHENON is designed with extensibility in mind
offering many “plug-and-play” interfaces. This allows for a
straightforward addition of many capabilities in down-
stream codes without requiring changes in PARTHENON itself.
At the same time, this also allows different downstream
applications to easily share code as all downstream features
are implemented using those interfaces by construction.

3.2. Intermediate abstraction layer

A given set of hardware may require different loop patterns
and nested parallelism for optimal performance. For ex-
ample, an Intel machine parallelized only with MPI may be
most performant with a standard C++ for loop, enabled with

468 The International Journal of High Performance Computing Applications 37(5)

vectorization pramgas. However, this will obviously not
be the case on a GPU. Following the work in Grete et al.
(2021a), we introduce a set of loop abstractions, which
we call parthenon::par_for and parthenon::
par_reduce. At their simplest, these are thin wrappers
around KOKKOS parallel dispatch. However, they have a
unified interface suited to parthenon loops over mesh-
blocks, regardless of the parallelism pattern used “under
the hood.” This enables us to swap out KOKKOS loops for
basic for loops and calls to the C++ standard library. An
example two-dimensional using the basic abstraction
might look like

For ease of use, PARTHENON sets several default options, such
as the parallel pattern, at compile time depending on the
target architecture. These are used when the par_for
associated with a MeshBlock are used as illustrated in the
following listing.

We also introduce an arbitrary rank array abstraction,
built on Kokkos::View, which we call ParArrayND.
To support KOKKOS layout machinery, we use a six-
dimensional Kokkos::View as the underlying data
structure, and provide a suite of methods for accessing
the elements of the array, casting it into a Kokkos::
View, and getting lower-dimensional slices. This allows
us to treat scalar, vector, and tensor variables all in the
same way. For example, a three-dimensional array can be
allocated as shown in Listing 3.

The shape is set by n3, through n1. Our convention is that
the slowest-moving index is first in the constructor argu-
ments and higher rank. However, this depends on the un-
derlying KOKKOS memory layout setting. (We currently

assume LayoutLeft.) Our ParArrayND abstraction
supports access operators, where missing indexes are as-
sumed zero, slice operators, and access to the underlying
Kokkos::View, as shown in Listing 4.

Both host and device ParArrayND objects are supported,
but they default to living in device memory.

3.3. Packages

PARTHENON is designed to couple multiple disparate com-
ponents together. To capture this, we introduce packages.
Each package is an independent functionality built on top of
PARTHENON, with its own registered variables, physics
routines, and tasks. Importantly, packages can share vari-
ables. In other words, package “A” may register a variable
and package “B” may use it. PARTHENON supports depen-
dency tracking between variables registered by packages. A
package may register a variable as

· Private
· Provides
· Requires
· Overridable

A Private variable is private to a given package, and
lives in the package’s namespace. Other packages should
not access it. A Provides variable is provided by a
package, with the intent that other packages may use it.
However, the providing package is expected “own” the
variable. If two packages try to provide the same vari-
able, an error is raised. If a package registers a Requires
variable, it is stating that it needs this variable to exist,
but does not create or manage it itself. If no package
provides a required variable, an error is raised. If a
package registers an Overridable variable, it is stating
that it can provide this variable, but will defer to another
package, if it provides it.

Grete et al. 469

Packages register their variables, as well as global constants
within their namespace (called params) in a function we call
Initialize. An example Initialize function is shown in
Listing 5. All initializations are registered by the parthenon
manager object at startup. To tell the code what packages to
load, a ProcessPackages function must be provided.
An example function is shown in Listing 6.

Note that although packages create their own variables and
provide tasks, these tasks are not automatically called. The
tasks must be woven together “by hand” by an expert in the
driver code. This will be explained in Section 3.10.

3.4. Variables

Variables in PARTHENON consist of metadata and data. The
data is stored on a per-block basis in a multidimensional
Kokkos::View. It can live at cell centers, faces, edges,
corners, or not be associated with a mesh entity at all.
Although in the initial PARTHENON release, only cell-centered
and non-mesh-tied variables are fully implemented. Support

for the other types of variables will be added in a later
release.

All variables in PARTHENON must be named. The name is
used in simulation output, error messages, and to obtain a
handle to the variable data from containers (see Section 3.6).
This greatly enhances the readability and self-documentation
of the code. The name of a variable is stored in its metadata
along with other important information. The metadata also
contains the shape of the variable, that is, if it is a scalar,
vector, or tensor, along with the number of components in
each dimension in the case of vectors and tensors. Finally,
the metadata contains a collection of flags that indicate, for
example, if the variable is independent or derived, whether
it is private, provided, required, or overridable (see previous
section), if it is advected, if it needs ghost cells filled, or if it
has fluxes.

The metadata information allows the PARTHENON infra-
structure to perform certain tasks on variables without
needing to understand their physical meaning. For example,
PARTHENON can write a restart file that includes only the
independent variables, since they are all flagged as such.
When using reflective boundary conditions, PARTHENON can
reflect the X-component of vector variables in the X-
direction, Y-components in the Y-direction, and so on.
Furthermore, the metadata flags are also useful for user
provided physics packages. For example, the hydro package
can advect all variables from all packages flagged as ad-
vected, without needing to know what those variables are.
By setting the FillGhost and WithFluxes metadata
flags, the user can control which variables will have their
ghost cells filled by PARTHENON and which variables will
have fluxes buffers allocated.

Typically, variables are allocated on every block in the
entire domain. But for some applications, there may be
variables that are only relevant in parts of the domain, thus
creating opportunities to save both memory and computing
resources. For such cases, PARTHENON provides sparse
variables. Sparse variables behave just like ordinary (or
dense) variables, with two exceptions: (i) Instead of just a
name, sparse variables have a base name and a sparse ID and
(ii) sparse variables are only allocated on some blocks.

Sparse variables are added through pools. A sparse pool
consists of a base name, a set of sparse IDs, and shared
metadata. For each sparse ID in the pool (e.g., 1, 4, 10, and
11), a sparse variable is created whose name is “base-
name_X”, where “basename” is the pool’s basename and
“X” is the sparse ID. The sparse variables have the same
metadata as the pool’s shared metadata, except for the shape
and Vector/Tensor flags, which can be set individually per
sparse ID. Furthermore, the sparse variables are not allo-
cated on any blocks until the user manually allocates them
on specific blocks or they are advected into a block where
they were not previously allocated. They can also be
deallocated by the PARTHENON infrastructure if they

470 The International Journal of High Performance Computing Applications 37(5)

completely leave a block. The main use case for sparse
variables are multi-material simulations where a particular
sparse ID corresponds to a particular material. Currently,
only cell-centered variables are supported as sparse
variables.

3.5. Particles

In addition to the structured multidimensional variables
(either tied to mesh entities or not) described above,
PARTHENON also supports particle data structures, called
Swarms. Like variables, swarms combine metadata and
data, and are stored on a per-block basis. Swarms hold
particle data in a Struct of Arrays pattern; as such, particles
that will be iterated over together by the same physics
should belong to the same swarm.

Swarms support a subset of Metadata flags used by
variables; Provides or Requires are used by individual
packages to share particle data, and None is generically set
because particles are not grid-based quantities. A swarm is
composed of a set of ParticleVariables, which store
data in 1D ParArrayNDs. Each particle variable contains
its own metadata; in particular, this metadata is used to
specify the datatype of the particle variable, either real or
integer. Swarms are always created with x, y, and z real-
valued particle variables; additional variables are enrolled
by the package creating the swarm. This approach of user-
specified data with memory locality provided by the library
has been successfully applied in other particle frameworks
(Mniszewski et al., 2021; Zhang et al., 2021).

In general, the particle population will grow and shrink in
size over time, particularly on the scale of a meshblock. This
can occur both through physics algorithms that create or
destroy particles and communication of particles across
meshblocks. Swarms manage their memory dynamically;
users request the creation of a certain number of particles.
Existing empty elements in the particle list are filled in first,
and then if necessary the swarm will internally resize its
ParticleVariables to accommodate the remaining particles.
This resizing procedure proceeds exponentially to limit the
number of memory reallocations required; the size of the
memory pool grows by factors of 2. Swarms include a
Defrag method that deep copies individual particles’ entries
to ensure contiguous memory in each particle variable on
demand.

Particle communication is handled by non-blocking send
and receive calls as in grid-based data communication.
During package functions that update particle positions,
particles must be checked for whether they have left the
meshblock they are currently on. This will be recorded by
the swarm, and during the subsequent send and receive calls
the off-block particles will be copied to either send buffers
for subsequent MPI communication or copied directly onto
the receive buffers of blocks on the sameMPI rank. The sent

particles are deleted from the sending meshblock’s swarm.
Receiving meshblocks then copy the particles from the
receiving buffers into their own swarm’s particle variables.
Only communication to neighboring meshblocks is
supported.

Particle communication between the same meshblocks
can be required multiple times per timestep, particularly for
algorithms where particles can traverse many meshblocks
per timestep. This can be implemented by a separate
blocking TaskRegion that is repeatedly called until a
global stop criterion is met, as in the provided examples, or
through the iterative task list machinery.

Boundary conditions on particles are applied to all
particles marked as being off their meshblock by the internal
swarm send and receive tasks. Boundary conditions are
implemented through separate polymorphic boundary
condition classes for each of the six boundary faces. PAR-

THENON provides periodic and outflow boundary conditions;
additional boundary conditions can be implemented by
driver applications.

Particles are not sorted by grid zone below the scale of an
individual meshblock. Particle-mesh interactions are han-
dled via KOKKOS atomics by the downstream application.

3.6. Data containers/packing

As discussed above, each package may register its own set
of variables. However, it is often useful to loop over all
variables, either sparse or dense, with some set of properties
such as the need to perform ghost halo exchange. Because
launching code on an accelerator comes with some (often
significant) latency, it is also often far more performant to
bundle work across mesh blocks into a single device kernel
launch.

To enable this, we implement VariablePacks and
MeshBlockPacks. VariablePacks are objects that
collect all desired variables within a single index space. In
the process, indices of higher rank variables (e.g., tensors)
are flattened so that all variables (and their components) can
be accessed by a single running index, typically v in ad-
dition to the spatial k, j, and i indices. The underlying data
structure is a View of Views allowing efficient access to
the existing data on devices. Variables for Varia-
blePacks can be selected via metadata tags registered by a
given package, or by name. MeshBlockPacks do the
same, but also gather variables from some number of
meshblocks on a given MPI rank. This results in an addi-
tional, fifth flattened index, typically notated by b. The
optimal number of meshblocks to gather is hardware and
problem dependent, and so may be set at runtime, see
Section 5.2 for some example results. To expose these
packing mechanisms, as well as relevant metadata used in a
given physics kernel, we implement the MeshBlockData
and MeshData data structures. These objects have

Grete et al. 471

methods to generate pack objects and also automatically
cache the relevant packs from cycle to cycle. The Mesh-
BlockData and MeshData objects also expose ac-
cessors for variables, grid shape information, and
parameters set by individual packages. Overall, this allows
efficient access to all data of an arbitrary number of vari-
ables on an arbitrary number of blocks through tight, 5-
dimensional loops.

3.7. Boundary communication

Two important strategies to achieve a high parallel efficiency
across multiple ranks are implemented in PARTHENON.

First (and more general), all communication buffers can
be exchanged asynchronously by using one-sided, asyn-
chronous MPI calls. Moreover, each Variable uses its
ownMPI handle so that individual Variables can also be
communicated independently. This also applies to flux
correction for multilevel meshes. A typical driver to solve
equations in conservative form implements several
boundary communication related tasks that are split on
purpose. These tasks include (a) initializing/resetting the
individual MPI handles, (b) starting and receiving flux
correction (with mesh refinement enabled after calculating
block local fluxes), (c) filling communication buffers with
the updated data (e.g., after calculating the flux divergence),
(d) start sending communication buffers (via MPI_Start),
and (e) fill ghost cells from buffers already received. These
tasks can be run for individual blocks and variables and,
thus, allow to hide communication related walltime (e.g.,
latency) behind computations. In other words, while buffers
of some blocks are filled in a compute kernel executed on a
device, already filled buffers of other blocks can already be
communicated in parallel in the background.

The second (and more specific to GPU-accelerated
simulations) strategy is filling more than one communica-
tion buffer in a single kernel. In ATHENA++ each buffer is
filled independently in small pack and unpacking routines.
However, the work done in these buffer filling kernels is
very small, for example, just copying 8 numbers for a corner
buffer of a 3D block with 2 ghost zones in each direction,
making the actual kernel runtime significantly smaller than
the kernel launch time (typically a couple of μs). Given that
some vendor APIs (e.g., when running with the CUDA
backend) are inherently serial for launching kernels, no
significant performance increase can be expected even when
multiple kernels can be executed in parallel on the device.
For this reason, we implemented a flexible “fill-in-one”
approach that allows us to fill all buffers of one or more
Variables on one or more blocks in a single kernel, see
Figure 2 for an illustration. The performance in practice of
this approach is shown in Section 5.1.

With the block structured AMR adopted in PARTHENON,
prolongation and restriction of data only occurs during

communication of data between neighboring MeshBlocks
at different levels of refinement, and therefore these steps
are functionally part of the boundary communication de-
sign. Data sent from fine-to-coarse levels are first restricted
and then communicated to reduce message sizes. Data sent
from coarse-to-fine are packed into special coarse buffers on
the target MeshBlock. Once all communication has
completed, the data in these coarse buffers are then inter-
polated (prolongated) to the fine resolution. Details of the
multi-level communication and interpolation algorithms for
cell- and face-centered data are given in Sections. 2.1.3 and
2.1.5 of Stone et al. (2020). Again, in order to reduce the
number kernel launches restriction is now handled within
the “fill-in-one” machinery in contrast to ATHENA++ where
each restriction is a separate kernel.

Finally, contrary to the ATHENA++ design each Vari-
able uses a unique MPI communicator rather than the
default communicator and individual buffers use MPI tags
created sequentially rather than globally. The key advantage
is to circumvent the minimum upper bound of at least
32,767 defined by the MPI standard. This bound is easily

Figure 2. Illustration of the buffer and block packing machinery in
PARTHENON. (top) In the original refactoring from ATHENA++ each
communication buffer of each block is packed separately and
sequentially with the runtime of the kernel typically being smaller
than the kernel launch overhead itself. (middle) With buffer
packing all communication buffers of a single block are filled in a
single kernel (with slightly larger runtime – but more parallelism
inside the kernel). (bottom) With buffer packing and block
packing all buffers of all blocks in pack (number of blocks per pack
is a runtime parameter) are filled in a single kernel (allowing for
even more parallelism).

472 The International Journal of High Performance Computing Applications 37(5)

reached when running 3Dmesh refinement simulations with
small block sizes on modern devices where a single rank can
(computationally) easily handle 100s–1000s of blocks.

3.8. Load balancing and mesh refinement

When new MeshBlocks are created or destroyed as part of
the AMR, load balancing of the resulting workload across
devices becomes important. Following the strategy in
ATHENA++ (see section 2.1.6 in Stone et al. (2020)), in
PARTHENON MeshBlocks are redistributed across nodes
whenever mesh refinement occurs and the tree is rebuilt.
Generally some fractions of the MeshBlocks on each
device will have to be moved to neighbors to achieve good
balance. Nevertheless, the increase in performance asso-
ciated with good load balancing outweighs the overhead of
this communication. Note that mesh derefinement is only
allowed periodically (controlled by a runtime parameter) to
prevent regions very close to the criterion from refining and
then derefining on subsequent cycles.

For performance, the new tree structure is always rebuilt
first and that information is used to determine the meshblock
distribution across ranks. Thus, only afterward the tree is
populated with data either by (a) moving pointers to
MeshBlock objects for same-level, same-rank blocks
from the old to the new tree, (b) by creating or destroying
blocks for same-rank, (de)refined blocks, or (c) by sending
meshblock data to a different rank. For the latter, the data
transfer is optimized for size, that is, if blocks can be
derefined on the sending rank, this is done first before
sending the data, and, similarly, if the block needs to be
refined, the original data is being sent and the refinement
occurs on the receiving rank.

3.9. IO

PARTHENON uses (parallel) HDF5 to read and write simulation
data. An arbitrary number of different outputs can be de-
fined for a given simulation that can differ in the time in-
terval for writing output, the variables contained, the
precision (single or double precision floating point num-
bers) and the compression level. The latter is also enabled
through the HDF5 library and allows for inline compression,
which is particularly useful for sparse variables. Several
environment variables are processed by PARTHENON for a
fine-grained control of both HDF5 parameters as well as MPI-
IO parameters. For performance, data locality, and (op-
tional) compression HDF5 chunking is used where each
chunk corresponds to the meshblock data of a Variable
component. The special “restart” output type forcibly in-
cludes all variables with the Independent or Restart
Metadata flags and write output in double precision. They
allow for a simulation to be restarted in a bitwise identical
manner. Moreover, when restarting a simulation a different

number of MPI ranks can be chosen, for example, to adapt to
a changing number of MeshBlocks when using AMR.
This is naturally handled by the load balancing mechanism
as the tree is being rebuilt upon restarting a simulation.

PARTHENON also automatically writes xdmf files along
the data files, which allows external (analysis) tools such as
PARAVIEW or VISIT to directly read the output data. Finally, a
YT frontend is currently being reviewed and expected to be
merged soon.

3.10. Tasks and reductions

PARTHENON provides a simple infrastructure for exploiting
task-based parallelism. Tasks are organized hierarchically in
TaskCollection, TaskRegion, and TaskList
objects. In typical usage, applications build and execute a
TaskCollection object that encapsulates each stage of
a calculation, which might correspond to a timestep or even
a single Runge–Kutta integrator stage. Each TaskCol-
lection is made up of one or more TaskRegions, each
of which contains one or more TaskLists. At the lowest
level of the hierarchy, tasks are added to TaskList objects
by capturing the function to be executed, all of its argu-
ments, and any dependencies that must be executed before
the task can be launched. Tasks in a TaskList all operate
on data at the same granularity, be that the data on a single
“MeshBlock” or data across multiple “MeshBlocks.” Tasks
in different TaskList objects within a TaskRegion can
be executed concurrently, but TaskRegions are serialized
within a TaskCollection. Figure 3 illustrates these
relationships.

Many algorithms require the ability to do global re-
ductions. In a task-based environment where each rank may
be executing multiple tasks lists operating on independent
sub-domains, orchestrating these reductions is nontrivial.
PARTHENON provides task-based global reductions for typical
datatypes encountered in downstream applications such as
plain integers or floating point data, std::vectors
thereof, and Kokkos::Views or parthenon::Par-
ArrayNDs. Reductions are realized by updating a shared
rank-local variable from individual tasks in each Task-
List. Those tasks are marked as a shared dependency
within that TaskRegion. Only after all tasks with the
shared dependency are completed a non-blocking MPI
reduction operation is called from a single task on each rank.

3.11. Application driver

In PARTHENON-based applications, a driver orchestrates the
execution of a computation by building and executing
collections of tasks, calling I/O functions as needed, and
calling into the load balancing and AMR capabilities, if
desired. PARTHENON provides a basic set of driver classes
from which applications can derive.

Grete et al. 473

At the most basic level, the Driver class gives access to
the mesh and I/O capabilities, but assumes nothing about the
type of calculation being performed. Downstream appli-
cations must define an Execute function that encapsulates
the entirety of the control flow and execution. The cal-
culate_pi example demonstrates a capability that de-
rives from Driver, namely, one that approximates the
value of π using AMR.

Deriving from Driver, the EvolutionDriver is
appropriate for applications that evolve a solution through
time. In this case, Execute is already defined. When
applications derive from EvolutionDriver they must
provide a Step function that is responsible for evolving a
solution through a timestep. The EvolutionDriver
calls this Step function from within a loop that executes
until a specified amount of simulated time has elapsed,
calling the I/O, load balancing, and AMR capabilities as
appropriate.

Finally, PARTHENON provides a MultiStageDriver
which derives from the EvolutionDriver, defining the
Step function as appropriate for a multi-stage Runge–
Kutta integration. In this case, the downstream applica-
tion need only define a MakeTaskCollection function

which must build the TaskCollection object appro-
priate for a single stage of the integration. The advection
example demonstrates the usage of this driver class.

3.12. Machine dependent build configuration

While the hardware environment becomes more heterog-
enous (requiring performance portable approaches), the
software environment similarly adapts and becomes more
heterogenous. For example, custom launchers like= jsrun =
on OLCF’s Summit are developed and used to allow for an
appropriate mapping of hardware resources to processes for
parallel execution. At the same time, the user has to choose a
suitable mix of compiler, communication, and potentially
offloading libraries for configuring, compiling and running
a code.

For ease of use, PARTHENON ships with so-called machine
configuration files for various supercomputers. These files
contain default values, e.g. architecture specific flags or
parallel launch commands, as well as a recommendation for
the environment modules to load. The configurations are
regularly tested and updated to reflect the latest software
environment provided on a system. This allows (new) users
to readily compile and run the test suite without being
bothered by machine specific details.

4. Downstream applications

4.1. PARTHENON-HYDRO

PARTHENON-HYDRO1 is a minimal implementation of algo-
rithms solving the Euler equations. In contrast to the ex-
amples included in the PARTHENON repository, which are
mainly used to demonstrate and/or test individual features,
PARTHENON-HYDRO is considered a fully-fledged miniapp
consisting of just ≈ 1400 lines of C++ code total. Its main
purposes are to both illustrate a possible use of various
PARTHENON features combined in practice as well as an
external integration and performance test. PARTHENON-HYDRO
supports 1D, 2D, and 3D compressible hydrodynamics on
uniform and (static and adaptive) multilevel meshes. Given
PARTHENON’s ATHENA++ origins, PARTHENON-HYDRO is also
based on a subset of the algorithms implemented in
ATHENA++. More specifically, PARTHENON-HYDRO uses a
second-order method consisting of a two-stage Runge–
Kutta integrator, piecewise linear reconstruction and
HLLE Riemann solver. For illustration purposes following
three problem generators are implemented: a linear wave
(which is also used to illustrate automated convergence
testing by reusing the PARTHENON infrastructure externally),
a spherical blast wave, and a Kelvin-Helmholtz instability to
illustrate adaptive mesh refinement. There are no plans to
further extend “physics” capabilities of PARTHENON-HYDRO
with the exception of demonstrating new features in

Figure 3. Tasks are organized into regions which are in turn
organized into collections. Task regions within a collection are
executed sequentially and each task region can have a different
granularity. The illustrated task collection is composed of three
task regions, controlling the execution of tasks on four
MeshBlocks, indicated by the numbers. The first region
launched (potentially) concurrent tasks on each MeshBlock,
where the dependencies of a given task can only be other tasks
that operate on the same MeshBlock. Once all tasks in the
region are complete, the execution moves to the next region
where three tasks are launched that each operate on all four
MeshBlocks simultaneously. Finally, once these are complete,
execution moves to the final region which defines tasks that
operate on subsets of MeshBlocks. In this way, task
granularity is controlled at the task region level and overall
execution is controlled at the collection level.

474 The International Journal of High Performance Computing Applications 37(5)

PARTHENON as hydrodynamics is also supported by other,
more feature rich downstream applications such as
ATHENAPK.

4.2. AthenaPK

AthenaPK (Athena-Parthenon-Kokkos) is a general purpose
astrophysical magnetohydronamics code which serves as a
performance-portable, AMR-capable conversion of
ATHENA++ (Stone et al., 2020). It implements the hydro-
dynamics solvers from ATHENA++ and supplemented them
with a divergence cleaning magnetohydrodynamics solver
based on Dedner et al. (2002).

At present, AthenaPK is used for simulations of mag-
netized galaxy clusters with feedback from active galactic
nuclei, cf., Meece et al. (2017); Glines et al. (2020); Prasad
et al. (2020), cloud crushing in galatic outflows, and
magnetohydrodynamic turbulence. To support these ap-
plications additional features implemented include various
Riemann solvers, passive scalars, tabulated cooling, and
(an)isotropic thermal conduction with support for 2nd-order
Runge–Kutta–Legendre based super-time-stepping (Meyer
et al., 2014), see Figure 4 for an example multi-physics
simulation with AMR.

Development of ATHENAPK is public and contributions
are welcome2.

4.3. PHOEBUS

PHOEBUS3 is a general relativistic neutrino radiation mag-
netohydrodynamics code, designed for modeling compact
binary mergers and their aftermath. It uses the Valencia
formulation of general relativistic hydrodynamics (Martı́
et al., 1991), with constrained transport for magnetic fields.

Currently the cell-centered formulation of Tóth (2000) is
utilized, but face-centered fields will be leveraged once the
underlying data structures are implemented in PARTHENON.
On the radiation side, PHOEBUS implements Monte Carlo
transport as in Miller et al. (2019a), and a novel hybrid
scheme first presented in Ryan and Dolence (2020) is in
development. Currently PHOEBUS implements both arbitrary
fixed spacetimes as well as self-gravity under the monopole
approximation. Full dynamical numerical relativity is a
planned improvement. PHOEBUS carries with it several
challenges: a general relativistic background carries with it a
very large state vector, with O(100) variables; the fluid
primitives are no longer trivially solve-able from the con-
served variables, and must be found via numerical root
finding; the method requires the interweaving of grid and
particle variables; and the general relativistic equations
themselves are complicated and compute intensive. A code
paper for PHOEBUS is in preparation.

Figure 5 shows an example problem run in PHOEBUS: a
non-rotating neutron star. The top panel shows the density in
a poloidal slice. Any small perturbation excites the natural
oscillation modes in the star, shown in the bottom panel,
where we plot the central density, normalized by its value at
the initial time. These modes match those predicted from
perturbation theory (Yoshida and Eriguchi 2001) and pre-
sented in numerical tests in, for example, Löffler et al.
(2012).

Figure 6 shows another PHOEBUS example problem using
Monte Carlo neutrino transport, leveraging the PARTHENON
particles infrastructure. In this problem, an initially inho-
mogeneous electron fraction, the ratio of electrons to
baryons, of the background material is homogenized by
neutrino emission, transport, and absorption (neutrinos
transport lepton number). Inside PHOEBUS, we use the

Figure 4. ATHENAPK example: Passive scalar concentration in a supersonic cloud crushing simulation with magnetic fields, optically thin
radiative cooling, and mesh refinement configured to follow the cloud material (as passive scalar).

Grete et al. 475

SINGULARITY-EOS (Miller, 2022a) library for a realistic
equation of state (Skinner et al., 2019) and the SINGULARITY-
OPAC (Miller, 2022b) library for realistic opacities (O’Connor
andOtt, 2010; Steiner et al., 2013). Singularity libraries provide
production-quality data in a performance-portable way.

4.4. RIOT

RIOT is an LANL-based multi-physics code designed to
emulate a subset of the physics in the XRAGE code
(Gittings et al., 2008) to allow for comparisons of cell-based
and block-based AMR approaches. Currently it includes
multi-material, compressible hydrodynamics with a
pressure–temperature equilibrium mixed-cell closure, gray
radiation diffusion, a sub-grid turbulence model, thermo-
nuclear reactions, and high-explosives models. RIOT makes
heavy usage of PARTHENON’s sparse datatype to represent
material based state variables.

Figure 7 shows results from a classic three material test
problem called triple-point (Kucharik et al., 2010). At one
end of the domain, an ideal gas at high pressure drives a
shock into two distinct ideal gases that differ in their adi-
abatic index γ. The flow develops vorticity that leads to a
well-developed roll-up. The problem was solved in a 3D
geometry by revolving the traditional 2D setup about the y-
axis and made use of three levels of refinement triggered by
material interfaces. The figure shows slices of volume
fraction for each material where blue indicates the absence
of the material and red indicates a pure material, with white
indicating material mixing. On the top slice, we also show
the AMR grid to indicate how PARTHENON adapts the mesh
to accommodate the evolving and nontrivial geometry of the
materials.

Figure 5. Self-gravitating compact star as evolved in PHOEBUS

(top) and oscillations in the central density (bottom). The star is
stable for many cycles, and the oscillations match the expected
quasinormal mode structure for a non-rotating neutron star.

Figure 6. Initial and final electron fraction material states of the leptonization neutrino transport problem. Electron fraction-dependent
emissivities act to equilibrate the electron fraction across the simulation domain from the inhomogeneous initial conditions. The mean
electron fraction of the material is lower at the final time due to the presence of neutrinos.

476 The International Journal of High Performance Computing Applications 37(5)

5. Results

Unless noted otherwise, all result presented in this section
were obtained using PARTHENON-HYDRO (changeset
52fa13c with included KOKKOS and PARTHENON sub-
modules), that is, using a two-stage, second-order method
consisting of RK2 integration, piecewise linear recon-
struction, and HLLE Riemann solver.

5.1. Block and communication buffer packing

To highlight the need for packing meshblocks and com-
bining the communication buffer filling routines in order to
improve the performance on GPUs, we measured the
overhead associated with an overdecompositon of the mesh.
In this idealized setup, the mesh size is kept fixed and the
meshblock size is varied. With smaller and smaller mesh-
blocks, the ratio of ghost cells to active cells increases, the
number of buffers increases, and, generally, the overhead
associated with managing the entire hierarchy of mesh-
blocks increases. Figure 8 illustrates the relative perfor-
mance on a single GPU (V100) and a single CPU core
(Xeon Gold 6148) when going from using a single mesh-
block for the entire mesh to 4096 meshblocks.

On the CPU this overdecomposition results in an
overhead of ≈ 3:5 × independent of whether no packing
(“original”), packing all buffers of a meshblock in a single
kernel, or packing all buffers of all meshblocks in a single
kernel is used. This is comparable to the original im-
plementation in ATHENA++ with an overhead of ≈ 3:3 × , cf.,
Figure 36 in Stone et al. (2020).

On the GPU, the original implementation that launched
one kernel per buffer results in a significant overhead and

the performance drops by a factor of ≈ 82 × . This can be
attributed to the kernel launch overhead (≈ 5–7 μs on
Summit) that is longer than the kernel runtime itself—
especially when the communication buffers are small, for
example, for small meshblock sizes or for corners (8 cells)
in general. To alleviate this bottleneck, we first tried to use
multiple streams and launching kernels from multiple
threads. While the performance improved with multiple
kernels running simultaneously, the results were not sat-
isfactory because the kernel launch itself is inherently serial
at the CUDA level. The seconds approach of reducing the
number of kernel launches by filling all buffers of a
meshblock in one kernel (see Section 3.7) and by packing
multiple blocks (see Section 3.6) significantly reduced the
additional overhead. As shown in Figure 8, filling buffers in
a single kernel reduced the overhead from ≈ 82 × to ≈ 13 ×
at an overdecomposition of 4096 blocks. Combining this
with also handling all meshblocks in a single kernel reduced
the overhead further down to ≈ 3:5 × , which is now on par
with the CPU result.

5.2. Pack sizes and overdecomposition

As already noted in the ATHENA++ method paper (Stone
et al., 2020), some (limited amount of) overdecomposition,

Figure 8. Overhead associated with an overdecompositon of the
mesh measured as relative performance to a second-order
MHD update with ATHENAPKusing a single meshblock for the entire
mesh. The mesh size is fixed to 2563 (1283) and the block size
varies from 2563 (1283) to 163 (83) using a single process on a
single V100 GPU (single Xeon Gold 6148 CPU core). The dotted
lines show the original performance using a single kernel per block
and buffer. The dash-dotted lines show the performance packing
all communication buffers of a meshblock in a single kernel and
the solid lines correspond to using a single kernel to pack all buffers
of all meshblocks in a single kernel. Performance on CPUs is
effectively independent of buffer and block packing (all CPU lines
are on top of each other).

Figure 7. Slices of material volume fractions in the 3D three
material triple-point problem at t = 5.0. PARTHENON’s mesh
infrastructure enables RIOT to maintain high-resolution around
material interfaces, as shown in the top slice.

Grete et al. 477

that is using more than one block per computing device
(e.g., a CPU core) resulted in higher performance as it
allowed for additional overlapping of computation and
communication. However, with an increasing number of
blocks per device the block size itself decreases resulting in
a smaller ratio of active to ghost cells that need to be
communicated. Thus, an optimal mesh decomposition is
problem and hardware dependent.

For PARTHENON with support for running on GPUs and
packing multiple blocks into a MeshBlockPack that are
handled simultaneously, finding an optimal decomposition
is even more complex. This is illustrated in Table 1 where
we list the performance per node of PARTHENON-HYDRO for
uniform and multilevel mesh runs on 16 Summit nodes for
various options to distribute the workload. Note, the ex-
ample mesh and block sizes are chosen to illustrate a general
direction and details will vary with other factors including
(but not limited to) devices (and their features), intercon-
nects, mesh hierarchy, or block sizes.

When using a single MPI rank per GPU the best perfor-
mance is typically achieved when using just a single pack on
each device containing all blocks. Moreover, in the uniform
mesh case overdecomposing the mesh into 2 blocks per
device increases performance from 10.8 × 108 zone-cycles/s/
node to 11.7 × 108. This also holds for using 16 blocks per
device on GPUs as the ratio of active to ghost cells is still
large for block size of 1283. In contrast, using 16 blocks per
CPU core significantly reduces this ratio as the block size is
reduced to 322 × 16 in the example given and the perfor-
mance drops by ≈ 50% compared to using 2 blocks per CPU
core, which is optimal (and similar to ATHENA++).

On GPUs the performance can be improved even further
when using more than one rank per device. However, this
needs to be supported by the GPU driver or software as the
KOKKOS programming model currently supports a single
device per process only. Both for the uniform and the

multilevel mesh the performance is highest when using 4
ranks per device and splitting all blocks on each rank into
two packs. On the uniform mesh, it peaks at 13.1 × 108

zone-cycles/s/node and for the multilevel mesh at 4.0 × 108.
In contrast, the performance for the multilevel mesh is 4×
lower when using a single rank per GPU handling 256
blocks each and using a separate pack for each block. In
other words, both packing (i.e., reducing the number of
kernel calls) and using more ranks per device (i.e., reducing
the number of blocks per rank and, in turn, the block
management overhead per host rank) each result in a per-
formance increase of about 2× in this scenario. These po-
tential performance gains/losses related to runtime
parameters should encourage problem and application
specific tuning for an optimal use of available computa-
tional resources.

5.3. On-node performance portability

To highlight the performance portability enabled at the higher
level by the intermediate abstraction layer in PARTHENON and
at the lower level by KOKKOS, we measured the performance
of PARTHENON-HYDRO on individual devices across several
architectures. These include x86 CPUs with AVX2 and
AVX512 instruction sets, ARM CPUs with A64FX archi-
tecture, NVIDIA GPUs and AMD GPUs.

The results are shown in Table 2. A single V100 GPU is
about 4× faster than a 40 core Intel Skylake system or ≈6 ×
faster than a 28 core Intel Broadwell system, which matches
the ratios measured for K-ATHENA (Grete et al., 2021a).
Similarly, the Intel CPU performance of PARTHENON-HYDRO
only about 20% lower than reported for the same algorithms
in ATHENA++ (Stone et al., 2020) highlighting the low
overhead of the abstractions provided by PARTHENON.

On a single MI250X GPU (using 2 GCDs) PARTHENON-
HYDRO is about 2.6× faster than on a MI100 GPU and on an

Table 1. Performance of PARTHENON-HYDROin 108 zone-cycles/s/node on 16 Summit nodes for fixed mesh sizes and various options to
distribute the workload. The uniform mesh size is fixed to 2048 × 1536 × 1024 (1792 × 384 × 256) on GPUs (CPUs) split into blocks of
2562 × 512, 2563, and 1283 per GPU (643, 642 × 32, and 322 × 16 per CPU core) for 1, 2 and 16 blocks per device, respectively. The
multilevel mesh is identical on GPUs and CPUs and contains a cubic region with side length 0.4 refined to level 3 in a unit cube. The root
grid has a resolution of 2563 and the block size is 323. The resulting mesh hierarchy has 296, 1216, 1352 and 21,952 blocks on level 0, 1, 2,
and 3, respectively. The “B” for the number of MeshBlockPacks per rank stands for using one MeshBlockPack for each
MeshBlock. Using more than one rank per GPU on Summit is enabled by the NVIDIA Multi-Process Service (MPS).

blocks per dev

Uniform mesh Multilevel mesh

1 2 16 259 (GPU) & 37 (CPU)

packs per rank 1 1 B 1 2 4 B 1 2 4 B

1 rank per GPU 10.8 11.7 10.7 11.7 11.3 11.0 9.1 2.2 2.2 2.2 1.0
2 ranks per GPU — 12.9 — 12.6 12.6 12.2 11.6 2.9 3.0 3.0 1.7
4 ranks per GPU — — — 13.0 13.1 12.9 12.9 3.9 4.0 4.0 2.7

1 rank per CPU core 0.45 0.47 0.44 0.25 0.29 0.29 0.29 0.42 0.43 0.42 0.40

478 The International Journal of High Performance Computing Applications 37(5)

A100 GPU PARTHENON-HYDRO is about 55% faster than on a
V100 GPU. This corresponds to the increased memory
bandwidth in combination with the bandwidth limited al-
gorithms implemented, cf., the roofline model shown in
Grete et al. (2021a). While the relative performance of the
MI100 GPU with ≈80% of a V100 GPU is still reasonable
(despite the 57% increase in memory bandwidth), the
A64FX CPU (≈13% of a V100) is slower than expected
based on the device memory bandwidth. First tests in-
dicate that some fraction of the lower performance can be
attributed to difficulties of the compiler to (auto)vec-
torize the compute kernels, which is in agreement with
similar results reported for the FLASH code (Feldman
et al., 2022), and, thus, not intrinsic to the PARTHENON

framework itself.

5.4. Scaling results

All scaling tests in this subsection have been performed with
PARTHENON-HYDRO. Given the simplicity of the algorithms in
the miniapp, PARTHENON-HYDRO is a well-suited proxy to
gauge the performance of the PARTHENON framework itself.
Table 3 lists an overview of the node configuration, software
environment, and compiler flags of all machines used for
testing.

Note that the individual mesh sizes used in the scaling
tests on uniform meshes vary slightly between different
machines and devices. We tried to keep the comparison as
fair as possible by ensuring that the computational load per
compute element is uniformly distributed, for example, each
compute element (a CPU core or a GPU) handles the same
number of MeshBlocks for a given test case so that there
is no artificial load imbalance. Finally, the numbers reported
correspond to the median performance of several tens of
cycles to mitigate external effects (such as network con-
gestion) as most of data was collected using non-exclusive
allocations.

5.4.1. Weak scaling on uniform grids. The weak scaling of
PARTHENON-HYDRO on various machines is illustrated in
Figure 9. In general, we used problem sizes that used a large
fraction of the available GPU memory (512 × 2562 per 16G
V100 GPU, 5122 × 256 per 40G A100, and 5123 per 64G
MI250X GCD) and 643 per CPU core. At the largest scale,
PARTHENON-HYDRO reaches a 92% parallel efficiency going
from one to 9216 nodes (73,728 logical GPUs) on Frontier
for a total of 1.7 × 1013 zone-cycles/s—in other words,
effectively updating a 16, 3843 mesh about four times per
second. At the largest rank count, PARTHENON-HYDRO reaches
a 93% parallel efficiency going from one to 8192 nodes
(458,752 MPI ranks with one rank per core) on Frontera.
Overall, we see a significant speedups using GPUs over
CPUs even at large node counts, for example, ≈29 × on a
1024 Summit nodes. In addition, the parallel efficiency is
generally comparable between CPUs and GPUs with the
exception of Summit. This is in agreement with the scaling
behavior of K-ATHENA (Grete et al., 2021a) and can be
attributed to the improved node design of more recent
machines. On Frontier and JUWELS Booster each GPU is
directly connected to a separate interconnect card, whereas
on Summit six GPUs share two InfiniBand cards per node
connected to the CPU.

5.4.2. Strong scaling on uniform grid. The strong scaling on
uniform grids of PARTHENON-HYDRO on various machines is
illustrated in Figure 10. We used comparable problem sizes
of (1, 0243 and started with the minimum number of
nodes required on each machine. In general, the parallel
efficiency using CPUs is slightly higher than using GPUs on
the same machine, for example, on Summit remaining
at ≈80% on CPUs for a 32× increase in node count (going
from 4 to 128 nodes). While the parallel efficiency on
Summit drops to ≈35% at 128 nodes using GPUs the raw
performance of the GPU accelerated simulations is still
more than 10× greater than using CPUs. The differences
between CPU and GPU strong scaling parallel efficiency
can be attributed to the significantly larger ratio of
throughput and memory bandwidth to problem size on
GPUs, resulting in a more challenging baseline on GPUs,
cf., similar results for K-ATHENA (Grete et al., 2021a).
Nevertheless, for a 32× increase in node count on Frontier
the parallel efficiency remains high at 67% and 60% going
from 1 to 32 or 64 to 2048 nodes, respectively.

5.4.3. Strong scaling with multilevel grids. In contrast to the
scaling tests on uniform grids presented in the previous two
subsections, Figure 11 show the strong scaling behavior of
PARTHENON-HYDRO for a multilevel grid. The grid is the same
as used in Section 5.2, that is, a block size of 323 is used on a
2563 root grid with 3 additional levels of refinement re-
sulting in 296, 1216, 1352, and 21,952 blocks on level 0, 1,
2, and 3, respectively. Therefore, this tests now includes the

Table 2. Performance of PARTHENON-HYDROin 108 zone-cycles/s
using the full device (i.e. either a single GPU or all CPU cores of a
node) for a typical workload per device on a uniform mesh.

Device (Arch./Instr.) Performance

AMD MI250X GPU (ROCm, 2x GCD) 5.7
NVIDIA A100 GPU (CUDA Cap. 8.0) 4.2
NVIDIA V100 GPU (CUDA Cap. 7.0) 2.7
AMD MI100 GPU (ROCm) 2.15
AMD EPYC 7H12 (2 × 64 C x86 AVX2) 1.45
Intel Xeon 6148 (2 × 20 C x86 AVX512) 0.67
IBM Power9 (2 × 21 C) 0.51
Intel Xeon E5-2680v4 (2 × 14 C x86 AVX2) 0.43
Fujitsu A64FX (1 × 48 C ARMv8.2-A) 0.36

Grete et al. 479

prolongation/restriction machinery for ghost zones across
level boundaries as well as flux correction for faces across
level boundaries.

The strong scaling parallel efficiency on CPUs is gen-
erally better than on GPUs on Summit reaching ≈97%
and ≈59%, respectively, going from 8 to 128 nodes. Again,
simulations on GPUs are significantly faster than ones using
CPUs, but the speedup is lower than on uniform grids, for
example, ≈10 × on 8 nodes and ≈6 × on 128 nodes for the
given setup. This difference stems from the small kernels
sizes, for example, in the flux correction step, which cur-
rently is still follows a “one kernel per face” approach, and
the associated overhead. We expect further improvements
by also using the packing approach described in Section 3.6
for the flux correction. The (limited) super-linear speedup
observed in the CPU runs on Summit can be attributed to the
mesh management overhead where at the smallest scales (8

nodes) each rank handles ≈ 74 blocks, which is successively
reduced with larger rank count, cf., Section 5.1 and 5.2. On
GPUs this is not observed as the overhead is hidden by
asynchronously running kernels over larger packs of blocks.
Finally, on Frontier a 256× increase in resources still results
in a parallel efficiency of 55% again highlighting the im-
portance of the direct connection between interconnect and
GPUs.

6. Software engineering

6.1. Development model

PARTHENON is an open, community-driven effort to create a
performance-portable AMR framework applicable for a
wide variety of applications. Developers come from several
institutions, have access to different computational

Table 3. Summary of hardware configuration, software environment and compiler flags used in scaling tests. Summit and Frontier are
operated by the Oak Ridge leadership computing facility, booster refers to the JUWELS booster module operated by the Jülich
supercomputing center, Frontera is operated by the Texas advanced computing center, and Ookami is hosted by the institute for
advanced computational science at Stony Brook University.

Machine Node conf Environment Compiler optimization flags

Summit
GPU

2x 22-core Power9 CPU, 6x V100
16 GB, NVLink, 2x EDR InfiniBand

GCC 9.1.0, CUDA 11.0.3,
SpectrumMPI 10.4.0.3

-O3 -mcpu=power9 -mtune=power9
-expt-extended-lambda
-Wext-lambda-captures-this
-arch=sm_70

Summit
CPU

-O3 -mcpu=power9 -mtune=power9
-fopenmp-simd -fprefetch-loop-
arrays

Booster
GPU

2x 24-core Epyc 7402 CPU, 6x A100
40 GB, NVLink3, 4x HDR200
InfiniBand

GCC 11.2.0, CUDA 11.5,
OpenMPI 4.1.1

-O3 -march=znver2 -mtune=znver2
-expt-extended-lambda
-Wext-lambda-captures-this
-arch=sm_80

Booster
CPU

-O3 -march=znver2 -mtune=znver2
-fopenmp-simd -fprefetch-loop-
arrays

Frontier
GPU

1x 64-core 3rd Gen EPY, 4x MI250X,
Infinity Fabric (xGMI), Slingshot-11

HIP 5.1.20531, ROCm 5.1.0,
Cray MPICH 8.1.17

-O3 -march=znver2 -mtune=znver2
-fno-gpu-rdc –amdgpu-
target=gfx90a

Frontera 2x 28-core Intel Xeon Platinum 8280, 1x
HDR100 InfiniBand

ICC 19.1.1.217, Intel MPI
19.0.9

-O3 -xCORE-AVX512 -qopenmp-simd
-qoverride-limits

Ookami 1x 48-core Fujitsu A64FX, 1x HDR200
InfiniBand

Fujitsu FCC 4.5.0, OpenMPI
4.0.1

-Nclang -O3 -ffj-fast-matmul
-ffast-math -ffp-contract=fast
-ffj-fp-relaxed -ffj-ilfunc
-fbuiltin -fomit-frame-pointer
-finline-functions -ffj-preex
-ffj-zfill -ffj-swp -fopenmp-simd

480 The International Journal of High Performance Computing Applications 37(5)

resources, and have different application needs. In order to
meet the needs of disparate interests within the community,
we enforce sustainable collaborative software practices.
These are also documented in the repository itself in the
development guide.

Collaborative development is facilitated via the PAR-

THENON repository on GITHUB
4. Each contribution to the

developmental branch is verified with a continuous inte-
gration pipeline, and reviewed and approved by developers
from multiple downstream applications. A consistent code
style is strictly enforced across the code base with each
contribution using automated code style checking and
formatting.

New features to the AMR framework are documented
and demonstrated in examples contained within the re-
pository. These examples are then used in continuous in-
tegration testing.

6.2. Testing

At the highest level, PARTHENON uses a CTEST-based testing
environment that handles various test cases. A shorter test
suite is triggered automatically for new commits and/or
opened pull request. An extended test suite is executed
nightly for the develop branch or be triggered manually.
Similarly, the test suite can also be triggered locally during
development and offers flexible options to adapt to local
environments, for example, with respect to the number of

Figure 11. Strong scaling of PARTHENON-HYDROon multilevel grids
on Summit with raw performance in zone-cycles per second per
node (top), parallel efficiency (bottom). The mesh is identical to
the one presented in Section 5.2 , i.e. a 2563 root grid with 323

blocks and 3 additional levels of refinement resulting in 296,
1216, 1,352, and 21,952 blocks on level 0, 1, 2, and 3, respectively.

Figure 9. Weak scaling of PARTHENON-HYDRO on uniform grids on
various supercomputers with raw performance in zone-cycles
per second per node (top), parallel efficiency (bottom). On
Summit GPUs (CPUs) on each node handled approximately 5863

(2223) cells, on JUWELS Booster 8123 (2333), on Ookami 2333,
on Frontera 2453, and on Frontier 10243, respectively.

Figure 10. Strong scaling of PARTHENON-HYDROon uniform grids
on various supercomputers with raw performance in zone-
cycles per second per node (top), parallel efficiency (bottom). On
Summit GPUs (CPUs) the mesh size was fixed to 10242 × 768
(1024 × 896 × 768) and the load per node varied from 5863 to
1853 (5613 to 1773). On JUWELS Booster GPUs (CPUs) the mesh
size was fixed to 10243 (10242 × 768) and the load per node varied
from 8133 to 2563 (7383 to 2363). On Frontera the mesh size
was fixed to 10242 × 896 and the load per node varied from 7773

to 1223. On Frontier the small (large) mesh size was fixed to 10243

(40963) and the load per node varied from 10243 to 1283

(10243–3223).

Grete et al. 481

GPUs per node or the MPIlaunch command. The test in-
frastructure contains the following three building blocks.

6.2.1. Simple, standard tests include unit testing, build testing,
and coding style. For each new feature, developers are en-
couraged to provide separate unit tests that are ideally in-
dependent of other components in PARTHENON. PARTHENON
uses CATCH2 for these tests to automatically create de-
scriptive test cases that integrate with CTEST.

Given the various hardware architectures PARTHENON

targets and their respective recommended compilers, the
automated build testing covers several combinations. These
include Release and Debug builds for NVIDIA GPUs
with NVCC, x86 CPUs with G++, and AMDGPUs with HIPCC.
The builds are tested in DOCKER containers that are main-
tained and published through the main repository so that
they are easily available for developers and users.

Finally, consistent code style is automatically enforced
using CLANG-FORMAT and CPPLINT.

6.2.2. Regression tests. Regression tests also include inte-
gration tests as they cover more complex use cases. The
majority of regression tests use the examples available in
PARTHENON to verify correctness either against the analytic/
exact solution or against a good known previous reference
solution.

In contrast to the simple tests, which are directly called
from CTEST, we development a PYTHON based framework for
the regression tests. This framework allows to create
complex tests that are tailored to PARTHENON, for example,
with respect to calling a PARTHENON based executable
(i.e., one of the examples) with a given input file. The latter
can also be modified from within the testing framework.
Moreover, the “analysis” step of each test case also allows to
process the test results (including the data written to disk or
the terminal output) to create artifacts for easy visual
inspection.

The testing framework is fully documented and can
easily be reused in downstream codes. This allows for a
seamless integration of PARTHENON and downstream code
testing with a unified approach.

6.2.3. Performance testing. Performance testing and re-
porting is also realized through a separate framework: the
PARTHENON Performance Metrics App (PPMA). It is a
custom GITHUB application whose source is maintained in
the main repository. It allows to run multi-node per-
formance regression tests on internal machines and can
only be triggered manually manually after code review
for security reasons. For each run JSONfile is created
containing information about time and date of the test,
the branch, the commit hash, and various performance
metrics. The results are automatically compared and

plotted against the previous five commits of that branch
and against develop.

7. Current limitations and future enhancements

In the active, ongoing development of PARTHENON, we al-
ready identified several areas and features that can be further
improved and/or need to be implemented motivated by a
downstream code requirement.

For example, PARTHENON itself currently only supports
Cartesian coordinate systems with fixed mesh spacing.
Nevertheless, all coordinate related functions are already
abstracted and contained in in a separate class. Similarly, all
functions provided by PARTHENON are already making use of
those abstraction, for example, when calculating the di-
vergence of a flux or during flux correction in simulations
with mesh refinement. Therefore, the addition of other
coordinate systems is straightforward.

Similarly, the Variables class is already prepared to
handle additional variable types such as face centered or
edge centered variables. While basic support for face var-
iables is already implemented (covering allocation and
index handling), the boundary and communication routines
are not fully refactored yet.

From a performance point of view, we are currently
evaluating further improvements in the ghost zone com-
munication routines. For example, while overlapping
computation and communication is already supported
through the tasking infrastructure in combination with
asynchronous MPI routines, all ghost zones are currently
handled in the same way. This is not ideal as ghost zones
with neighbors on the same rank, that is, ones that are
directly copied to the receiving buffer, are handled in the
same kernels as those who are first copied into a buffer in
preparation for being sent via MPI. We expect that a split of
the kernel into handling remote ghost zones and rank-local
ones separately (in that order) to be more efficient because
rank-local buffers would be copied while all remote buffers
are already being transmitted. The same pattern also applies
to the unpacking of the receiving buffers in reverse order.

Independently, first tests indicate that the optimal loop
pattern for these buffer handling kernels depend on many
factors including overall simulation setup (e.g., Mesh-
Block size or ghost zone width), implementation details
(e.g., number of components in a Variable vector), or
device architecture. The results are not yet conclusive, but
we expect to eventually provide both an architecture spe-
cific default pattern as well as a general simulation/
algorithm dependent guideline. This similarly applies to
other runtime parameters such as the default Mesh-
BlockPack size or the number of ranks per device, cf.,
Section 5.2.

482 The International Journal of High Performance Computing Applications 37(5)

8. Conclusions

In this article, we presented the performance portable block-
structured adaptive mesh refinement framework PARTHENON.
Performance portability is achieved through the use of the
KOKKOS library in combination with an intermediate ab-
straction layer. The mesh refinement machinery is based on
ATHENA++.

The overall design philosophy follows a device-resident
approach, that is, all simulation data is only allocated on the
computing device to reduce data movement. Moreover,
PARTHENON is designed for shared capabilities between
various downstream application codes by exposing granular
interfaces to the application developers. At the same time,
we strive to keep PARTHENON simple enough to be easily
extensible.

Key features includes abstractions for packages, which
can be considered as disparate components containing,
for example, a hydrodynamics solver or a radiation
transport solver, abstractions for multidimensional vari-
ables including vectors and tensors with support for
sparse allocation, and a task-based applications driver
with support for asynchronous, dependency-based task
execution.

From a performance point of view, the key features
include the packing of variables and blocks into larger
logical structures so that they can be handled within a single
kernel. This is particularly relevant for kernels pertaining to
filling communication buffers and when using small block
sizes as the number of individual kernel launches can be
significantly reduced. Similarly, asynchronous, one-sided
MPI communicators are used directly from buffers in device
memory to allow for an overlap of compute kernels and data
transfer between nodes.

We demonstrated the success of these design decisions
and features in various scaling test using the hydrody-
namics miniapp PARTHENON-HYDRO reaching a total of
1.7 × 1013 zone-cycles/s on 9216 Frontier nodes (73,728
logical GPUs) at ≈92% weak scaling parallel efficiency
(starting from a single node). Moreover, we demonstrated
performance portability across different CPU and GPU
architectures including AMD and NVIDIA GPUs, Intel
and AMD x86 CPUs, IBM Power9 CPUs, and Fujitsu
A64FX CPUs. In general, simulations employing GPUs
are significantly faster compared to using the CPU re-
sources on the same node for both uniform grids (and
weak and strong scaling) as well as for multilevel grids,
that is, setups that require prolongation/restriction and
flux correction.

Several downstream applications are in active devel-
opment ranging from compressible magnetohydrody-
namics to general relativistic neutrino radiation
magnetohydrodynamics to multi-material compressible
hydrodynamics exemplifying the diverse application

scenarios enabled by PARTHENON. In addition, we also
introduced the PARTHENON-HYDRO miniapp supporting full
3D compressible hydrodynamics with adaptive mesh
refinement using PARTHENON’s capabilities in just over
1000 lines of code. This also highlights the use of PAR-
THENON as basis for rapid prototyping and testing of new
algorithms.

Finally, we emphasize that PARTHENON is an open, col-
laborative project and that new members/contributions are
always welcome!

Acknowledgments

The authors would like to thank the ATHENA++ team, in particular
Kengo Tomida, Kyle Felker, and Chris White for having provided
an open, well-engineered basis for PARTHENON. We also thank the
KOKKOS team for their continued support throughout the project
and John Holmen for supporting the scaling tests on Frontier.
Moreover, we would like to thank Daniel Arndt, Kyle Felker, Max
Katz, and Tim Williams for their contribution to this work during
the Argonne GPU Virtual Hackathon 2021. Finally, we would like
to thank our lovely bots, especially PAR-HERMES, who is a very good
bot. This work has been assigned a document release number LA-
UR-22-21270.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the U.S. Department of Energy through the
Los Alamos National Laboratory (LANL). LANL is operated by
Triad National Security, LLC, for the National Nuclear Security
Administration of U.S. Department of Energy (Contract No.
89233218CNA000001). PG acknowledges funding from LANL
through Subcontract No.: 615487. This project has received
funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant
agreement No 101030214. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The authors acknowledge the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin
for providing HPC resources during the April 2022 Texascale
Days. Code development, testing, and benchmarking was made
possible through various computing grants including allocations
on OLCF Summit and Frontier (AST146), Jülich Supercomputing
Centre JUWELS (athenapk), Stony Brook’s Ookami
(BrOs091321F), and Michgian State University’s High Per-
formance Computing Center.

Grete et al. 483

ORCID iDs

Philipp Grete https://orcid.org/0000-0003-3555-9886
Joshua C. Dolence https://orcid.org/0000-0003-4353-8751
Jonah M. Miller https://orcid.org/0000-0001-6432-7860
Ben Ryan https://orcid.org/0000-0001-8939-4461
Forrest Glines https://orcid.org/0000-0002-6837-8195
Galen Shipman https://orcid.org/0000-0001-6297-2145
Christoph Junghans https://orcid.org/0000-0003-0925-1458
Daniel Holladay https://orcid.org/0000-0002-0673-9741

Notes

1. https://github.com/parthenon-hpc-lab/parthenon-hydro
2. https://github.com/parthenon-hpc-lab/athenapk
3. https://github.com/lanl/phoebus
4. https://github.com/parthenon-hpc-lab/parthenon

References

Alcubierre M (2008) Introduction to 3+1 Numerical Relativity.
International Series of Monographs on Physics, OUP Oxford.
ISBN 9780191548291. https://books.google.com/books?id=-
xRREAAAQBAJ

Bakosi J, Bird R, Gonzalez F, et al. (2021) Asynchronous
distributed-memory task-parallel algorithm for compressible
flows on unstructured 3d eulerian grids. Advances in Engi-
neering Software 160: 102962. DOI: 10.1016/j.advengsoft.
2020.102962. https://www.sciencedirect.com/science/article/
pii/S0965997820310085

Berger MJ and Colella P (1989) Local adaptive mesh refine-
ment for shock hydrodynamics. Journal of Computational
Physics 82(1): 64–84. DOI: 10.1016/0021-9991(89)
90035-1.

Bourne MA and Sijacki D (2021) AGN jet feedback on a moving
mesh: gentle cluster heating by weak shocks and lobe dis-
ruption. Monthly Notices of the Royal Astronomical Society
506: 488–513. DOI: 10.1093/mnras/stab1662.

Brummel-Smith C, Bryan G, Butsky I, et al. (2019) Enzo: an
adaptive mesh refinement code for astrophysics (version 2.6).
Journal of Open Source Software 4(42): 1636. DOI: 10.
21105/joss.01636.

Carter Edwards H, Trott CR and Sunderland D (2014) Kokkos:
enabling manycore performance portability through poly-
morphic memory access patterns. Journal of Parallel and
Distributed Computing 74(12): 3202–3216. DOI: 10.1016/j.
jpdc.2014.07.003. https://www.sciencedirect.com/science/
article/pii/S0743731514001257. Domain-Specific Lan-
guages and High-Level Frameworks for High-Performance
Computing

Choi J, Richards DF and Kale LV (2022) Improving scalability
with GPU-Aware asynchronous tasks. arXiv e-prints : arXiv:
2202.11819.

Dedner A, Kemm F, Kröner D, et al. (2002) Hyperbolic divergence
cleaning for the MHD equations. Journal of Computational
Physics 175: 645–673. DOI: 10.1006/jcph.2001.6961.

Dubey A, Almgren A, Bell J, et al. (2014) A survey of high level
frameworks in block-structured adaptive mesh refinement
packages. Journal of Parallel and Distributed Computing
74(12): 3217–3227. DOI: 10.1016/j.jpdc.2014.07.001.
Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing.

Federrath C, Klessen RS, Iapichino L, et al. (2021) The sonic scale
of interstellar turbulence. Nature Astronomy 5(4): 365–371.
DOI: 10.1038/s41550-020-01282-z.

Feldman C,Michalowicz B, Siegmann E, et al. (2022) Experiences
with porting the flash code to ookami, an hpe apollo 80 a64fx
platform. In: International Conference on High Performance
Computing in Asia-Pacific Region Workshops, HPCAsia
2022 Workshop, New York, NY, USA, January 2022: As-
sociation for Computing Machinery, pp. 72–77. DOI: 10.
1145/3503470.3503478.

Gittings M, Weaver R, Clover M, et al. (2008) The RAGE
radiation-hydrodynamic code. Computational Science &
Discovery 1(1): 015005. DOI: 10.1088/1749-4699/1/1/
015005.

Glines FW, O’Shea BW and Voit GM (2020) Tests of AGN
Feedback Kernels in simulated galaxy clusters. The Astro-
physical Journal 901(2): 117. DOI: 10.3847/1538-4357/
abb08c.

Grete P, Glines FW and O’Shea BW (2021a) K-athena: a per-
formance portable structured grid finite volume magneto-
hydrodynamics code. IEEE Transactions on Parallel and
Distributed Systems 32(1): 85–97. DOI: 10.1109/TPDS.
2020.3010016.

Grete P, O’Shea BW and Beckwith K (2021b) As a matter of
tension: kinetic energy spectra in MHD turbulence. The
Astrophysical Journal 909(2): 148. DOI: 10.3847/1538-
4357/abdd22.

Holmen JK, Humphrey A, Sunderland D, et al. (2017) Improving
uintah’s scalability through the use of portable kokkos-based
data parallel tasks. In: Proceedings of the Practice and Ex-
perience in Advanced Research Computing 2017 on Sus-
tainability, Success and Impact. New York, NY, USA, July
2017: PEARC17ACM, p. 278. ISBN 978-1-4503-5272-7. 1–
27. DOI: 10.1145/3093338.3093388.

Kucharik M, Garimella RV, Schofield SP, et al. (2010) A com-
parative study of interface reconstruction methods for multi-
material ale simulations. Journal of Computational Physics
229(7): 2432–2452. DOI: 10.1016/j.jcp.2009.07.009. https://
www. s c i e n c e d i r e c t . c om / s c i e n c e / a r t i c l e / p i i /
S0021999109003891

Löffler F, Faber J, Bentivegna E, et al. (2012) The einstein toolkit: a
community computational infrastructure for relativistic as-
trophysics. Classical and Quantum Gravity 29(11): 115001.
DOI: 10.1088/0264-9381/29/11/115001.

MacNeice P, Olson KM, Mobarry C, et al. (2000) PARAMESH: a
parallel adaptive mesh refinement community toolkit.
Computer Physics Communications 126(3): 330–354. DOI:
10.1016/S0010-4655(99)00501-9.

484 The International Journal of High Performance Computing Applications 37(5)

https://orcid.org/0000-0003-3555-9886
https://orcid.org/0000-0003-3555-9886
https://orcid.org/0000-0003-4353-8751
https://orcid.org/0000-0003-4353-8751
https://orcid.org/0000-0001-6432-7860
https://orcid.org/0000-0001-6432-7860
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0001-8939-4461
https://orcid.org/0000-0002-6837-8195
https://orcid.org/0000-0002-6837-8195
https://orcid.org/0000-0001-6297-2145
https://orcid.org/0000-0001-6297-2145
https://orcid.org/0000-0003-0925-1458
https://orcid.org/0000-0003-0925-1458
https://orcid.org/0000-0002-0673-9741
https://orcid.org/0000-0002-0673-9741
https://github.com/parthenon-hpc-lab/parthenon-hydro
https://github.com/parthenon-hpc-lab/athenapk
https://github.com/lanl/phoebus
https://github.com/parthenon-hpc-lab/parthenon
https://books.google.com/books?id=-xRREAAAQBAJ
https://books.google.com/books?id=-xRREAAAQBAJ
https://doi.org/10.1016/j.advengsoft.2020.102962
https://doi.org/10.1016/j.advengsoft.2020.102962
https://www.sciencedirect.com/science/article/pii/S0965997820310085
https://www.sciencedirect.com/science/article/pii/S0965997820310085
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1093/mnras/stab1662
https://doi.org/10.21105/joss.01636
https://doi.org/10.21105/joss.01636
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/10.1006/jcph.2001.6961
https://doi.org/10.1016/j.jpdc.2014.07.001
https://doi.org/10.1038/s41550-020-01282-z
https://doi.org/10.1145/3503470.3503478
https://doi.org/10.1145/3503470.3503478
https://doi.org/10.1088/1749-4699/1/1/015005
https://doi.org/10.1088/1749-4699/1/1/015005
https://doi.org/10.3847/1538-4357/abb08c
https://doi.org/10.3847/1538-4357/abb08c
https://doi.org/10.1109/TPDS.2020.3010016
https://doi.org/10.1109/TPDS.2020.3010016
https://doi.org/10.3847/1538-4357/abdd22
https://doi.org/10.3847/1538-4357/abdd22
https://doi.org/10.1145/3093338.3093388
https://doi.org/10.1016/j.jcp.2009.07.009
https://www.sciencedirect.com/science/article/pii/S0021999109003891
https://www.sciencedirect.com/science/article/pii/S0021999109003891
https://www.sciencedirect.com/science/article/pii/S0021999109003891
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1016/S0010-4655(99)00501-9

Martı́ JM, Ibáñez JM and Miralles JA (1991) Numerical rel-
ativistic hydrodynamics: local characteristic approach.
Physical Review D 43: 3794–3801. DOI: 10.1103/
PhysRevD.43.3794. https://link.aps.org/doi/10.1103/
PhysRevD.43.3794

Meece GR, Voit GM and O’Shea BW (2017) Triggering and
delivery Algorithms for AGN Feedback. The Astrophysical
Journal 841(133): 17pp.

Meyer CD, Balsara DS and Aslam TD (2014) A stabilized runge–
kutta–legendre method for explicit super-time-stepping of
parabolic and mixed equations. Journal of Computational
Physics 257: 594–626 DOI: 10.1016/j.jcp.2013.08.021.
ht tps: / /www.sciencedirect .com/science/ar t icle/pi i /
S0021999113005597

Mignone A, Zanni C, Tzeferacos P, et al. (2011) The pluto code for
adaptive mesh computations in astrophysical fluid dynamics.
The Astrophysical Journal Supplement Series 198(1): 7. DOI:
10.1088/0067-0049/198/1/7.

Miller JM (2022a) Singularity-eos. In preparation. https://github.
com/lanl/singularity-eos

Miller JM (2022b) Singularity-opac. In preparation. https://github.
com/lanl/singularity-opac

Miller JM, Ryan BR and Dolence JC (2019a) νbhlight: radiation
GRMHD for neutrino-driven accretion flows. The Astro-
physical Journal Supplement Series 241(2): 30. DOI: 10.
3847/1538-4365/ab09fc.[

Miller JM, Ryan BR, Dolence JC, et al. (2019b) Full transport
model of gw170817-like disk produces a blue kilonova.
Physical Review D 100: 023008. DOI: 10.1103/PhysRevD.
100.023008. https://link.aps.org/doi/10.1103/PhysRevD.100.
023008

Miller JM and Schnetter E (2016) An operator-based local discon-
tinuous galerkin method compatible with the BSSN formulation
of the einstein equations. Classical and Quantum Gravity 34(1):
015003. DOI: 10.1088/1361-6382/34/1/015003.

Miller JM, Sprouse TM, Fryer CL, et al. (2020) Full transport
general relativistic radiation magnetohydrodynamics for
nucleosynthesis in collapsars. The Astrophysical Journal
902(1): 66. DOI: 10.3847/1538-4357/abb4e3.

Mniszewski SM, Belak J, Fattebert JL, et al. (2021) Enabling
particle applications for Exascale computing platforms. arXiv
e-prints : arXiv:2109.09056.

O’Connor E and Ott CD (2010) A new open-source code for
spherically symmetric stellar collapse to neutron stars and
black holes. Classical and Quantum Gravity 27(11): 114103.
DOI: 10.1088/0264-9381/27/11/114103.

Prasad D, Voit GM, O’Shea BW, et al. (2020) Environmental
dependence of self-regulating black Hole Feedback in
Massive Galaxies. The Astrophysical Journal 905(1): 50.
DOI: 10.3847/1538-4357/abc33c.

Ressler SM, White CJ, Quataert E, et al. (2020) Ab initio horizon-
scale simulations of magnetically arrested Accretion in Sag-
ittarius A* Fed by Stellar winds. The Astrophysical Journal
Letters 896(1): L6. DOI: 10.3847/2041-8213/ab9532.

Ryan BR and Dolence JC (2020) MOCMC: method of charac-
teristics moment closure, a numerical method for covariant
radiation magnetohydrodynamics. The Astrophysical Journal
891(2): 118. DOI: 10.3847/1538-4357/ab75e1.

Ryan BR, Ressler SM, Dolence JC, et al. (2018) Two-temperature
GRRMHD simulations of m87. The Astrophysical Journal
864(2): 126. DOI: 10.3847/1538-4357/aad73a.

Skinner MA, Dolence JC, Burrows A, et al. (2019) FORNAX: a
flexible code for multiphysics astrophysical simulations. The
Astrophysical Journal Supplement Series 241(1): 7. DOI: 10.
3847/1538-4365/ab007f.

Steiner AW, Hempel M and Fischer T (2013) Core-collapse su-
pernova equations of State based on Neutron star observa-
tions. The Astrophysical Journal 774(1): 17. DOI: 10.1088/
0004-637X/774/1/17.

Stone JM, Tomida K, White CJ, et al. (2020) The athena++
adaptive mesh refinement framework: design and magneto-
hydrodynamic solvers. The Astrophysical Journal Supple-
ment Series 249(1): 4. DOI: 10.3847/1538-4365/ab929b.

Teyssier R (2002) Cosmological hydrodynamics with adaptive
mesh refinement. A new high resolution code called RAM-
SES. Astronomy and Astrophysics 385: 337–364. DOI: 10.
1051/0004-6361:20011817.

Tóth G (2000) The =.b = 0 constraint in shock-capturing magne-
tohydrodynamics codes. Journal of Computational Physics
161(2): 605–652. DOI: 10.1006/jcph.2000.6519. https://www.
sciencedirect.com/science/article/pii/S0021999100965197

Trott C, Lebrun-Grandie D, Arndt D, et al. (2021) Kokkos 3:
programming model extensions for the exascale era. IEEE
Transactions on Parallel and Distributed Systems 1:
805–817. DOI: 10.1109/TPDS.2021.3097283.

Yoshida S and Eriguchi Y (2001) Quasi-radial modes of rotating
stars in general relativity. Monthly Notices of the Royal As-
tronomical Society 322(2): 389–396. DOI: 10.1046/j.1365-
8711.2001.04115.x.

Zhang UH, Schive HY and Chiueh T (2018) Magnetohydrody-
namics with gamer. The Astrophysical Journal Supplement
Series 236(2): 50. http://stacks.iop.org/0067-0049/236/i=2/
a=50

Zhang W, Myers A, Gott K, et al. (2021) Amrex: block-
structured adaptive mesh refinement for multiphysics
applications. The International Journal of High Perfor-
mance Computing Applications 35(6): 508–526. DOI: 10.
1177/10943420211022811.

Author biographies

Philipp Grete is a Marie Skłodowska-Curie Actions Post-
doctoral Fellow at the University of Hamburg. Previously,
he was a postdoctoral research associate at Michigan State
University after he obtained his PhD from the University of
Göttingen in 2016. His interdisciplinary research ranges
from plasma modeling to turbulence to high-performance
computing with an emphasis on performance portability.

Grete et al. 485

https://doi.org/10.1103/PhysRevD.43.3794
https://doi.org/10.1103/PhysRevD.43.3794
https://link.aps.org/doi/10.1103/PhysRevD.43.3794
https://link.aps.org/doi/10.1103/PhysRevD.43.3794
https://doi.org/10.1016/j.jcp.2013.08.021
https://www.sciencedirect.com/science/article/pii/S0021999113005597
https://www.sciencedirect.com/science/article/pii/S0021999113005597
https://doi.org/10.1088/0067-0049/198/1/7
https://github.com/lanl/singularity-eos
https://github.com/lanl/singularity-eos
https://github.com/lanl/singularity-opac
https://github.com/lanl/singularity-opac
https://doi.org/10.3847/1538-4365/ab09fc
https://doi.org/10.3847/1538-4365/ab09fc
https://doi.org/10.1103/PhysRevD.100.023008
https://doi.org/10.1103/PhysRevD.100.023008
https://link.aps.org/doi/10.1103/PhysRevD.100.023008
https://link.aps.org/doi/10.1103/PhysRevD.100.023008
https://doi.org/10.1088/1361-6382/34/1/015003
https://doi.org/10.3847/1538-4357/abb4e3
https://doi.org/10.1088/0264-9381/27/11/114103
https://doi.org/10.3847/1538-4357/abc33c
https://doi.org/10.3847/2041-8213/ab9532
https://doi.org/10.3847/1538-4357/ab75e1
https://doi.org/10.3847/1538-4357/aad73a
https://doi.org/10.3847/1538-4365/ab007f
https://doi.org/10.3847/1538-4365/ab007f
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.3847/1538-4365/ab929b
https://doi.org/10.1051/0004-6361:20011817
https://doi.org/10.1051/0004-6361:20011817
https://doi.org/10.1006/jcph.2000.6519
https://www.sciencedirect.com/science/article/pii/S0021999100965197
https://www.sciencedirect.com/science/article/pii/S0021999100965197
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1046/j.1365-8711.2001.04115.x
https://doi.org/10.1046/j.1365-8711.2001.04115.x
http://stacks.iop.org/0067-0049/236/i=2/a=50
http://stacks.iop.org/0067-0049/236/i=2/a=50
https://doi.org/10.1177/10943420211022811
https://doi.org/10.1177/10943420211022811

Joshua C Dolence is a scientist at Los Alamos National
Laboratory where he leads research efforts in computational
multiphysics, co-design for advanced architectures, and
relativistic astrophysics.

Jonah Miller is an expert in relativistic astrophysics and
high-performance computing. He got his PhD from the
University of Guelph where he worked at the Perimeter
Institute for Theoretical Physics. He is now a scientist at Los
Alamos National Laboratory, where he works on perfor-
mance portability, numerical analysis, and simulations of
high-energy and compact object astrophysics such as core-
collapse supernovae and neutron star mergers.

Joshua S Brown is a Software Engineer at OakRidgeNational
Laboratory. His interest is in accelerating science through
the development of quality scientific software and tooling.

Ben Ryan is a staff scientist at Los Alamos National Lab-
oratory. His scientific interests include numerical methods
for radiation hydrodynamics and applying those methods to
problems in astrophysics, particularly simulations of ac-
creting black holes. For his work as a member of the Event
Horizon Collaboration, he shared in the 2020 Breakthrough
Prize in Fundamental Physics.

Andrew Gaspar is a former Computer Scientist at Los
Alamos National Laboratory who focused on performance
portability to GPUs for mission critical simulation codes.

Forrest Glines is a Metropolis Postdoctoral Fellow at Los
Alamos National Laboratory, having received his PhD in As-
trophysics and Computational Mathematics, Science and Engi-
neering from Michigan State University in 2022. To enable
exascale simulations of astrophysical plasmas, he co-developed
theAthenaPKcodewhich he uses to study relativisticmagnetized
jets emitted by supermassive black holes and black hole mergers.

Sriram Swaminarayan is a senior scientist in the Computer,
Computational, and Statistical Sciences division at Los Ala-
mos National Laboratory (LANL). During his long career at
LANL he has served in both line and project leadership roles.
He was instrumental in creation of the Applied Computer
Science Group (CCS-7) and served as its first group
leader. He has worked extensively on large scale parallel
applications. His recent work is focused on moderni-
zation of LANL applications with a view towards pre-
paring them for GPUs and other modern architectures.

Jonas Lippuner earned his PhD in Physics from Caltech and
he is now a staff scientist at Los Alamos National Labo-
ratory. His background is in computational and nuclear
astrophysics and he is the author of the open-source nuclear
reaction network SkyNet.

Clell J (CJ) Solomon is a staff scientist at Los Alamos
National Laboratory and the current project leader of the
Eulerian Applications Project. He is interested in high-
performance computing, software engineering pertaining
to abstractions and generic code development for scientific
libraries, and particle transport methods particularly Monte
Carlo methods. CJ Holds a PhD in Nuclear Engineering
from Kansas State University.

Galen M Shipman is a Computer Scientist focusing on deep
application and architecture co-design at Los Alamos Na-
tional Laboratory, Los Alamos, NM, USA.

Christoph Junghans is the Group Leader of the Applied
Computer Science group at Los Alamos National Labo-
ratory. His research interests span from scientific software
development and engineering over molecular dynamics
methods to multi-scale simulation techniques. He holds a
PhD in Physics from the Max-Planck-Institute for Polymer
Research, Mainz, Germany.

Daniel Holladay is a staff scientist at Los Alamos National
Laboratory. His professional interests include using per-
formance portability tools to incorporate higher fidelity
models into multi-physics codes. He received a PhD in
nuclear engineering from Texas A&M University.

James Stone is a professor in the School of Natural Sciences
at the Institute for Advanced Study in Princeton,
NJ. Previously he was Lyman Spitzer, Jr Professor and chair
of the Department of Astrophysical Sciences at Princeton
University. Stone’s research interests are in the use of nu-
merical methods to study nonlinear and multidimensional
fluid dynamics in astrophysical systems, such as accretion
flows onto black holes.

Luke Roberts is a staff scientist at Los Alamos National
Laboratory. His research interests span a number of topics in
nuclear astrophysics, mainly focusing on core-collapse
supernovae and compact object mergers. He holds a PhD
from the University of California Santa Cruz.

486 The International Journal of High Performance Computing Applications 37(5)

	Parthenon—a performance portable block-structured adaptive mesh refinement framework
	1. Introduction
	2. Background
	2.1. Block-structured AMR
	2.2. Kokkos

	3. Design
	3.1. Primary design goals
	3.2. Intermediate abstraction layer
	3.3. Packages
	3.4. Variables
	3.5. Particles
	3.6. Data containers/packing
	3.7. Boundary communication
	3.8. Load balancing and mesh refinement
	3.9. IO
	3.10. Tasks and reductions
	3.11. Application driver
	3.12. Machine dependent build configuration

	4. Downstream applications
	4.1. Parthenon-hydro
	4.2. AthenaPK
	4.3. Phoebus
	4.4. RIOT

	5. Results
	5.1. Block and communication buffer packing
	5.2. Pack sizes and overdecomposition
	5.3. On-node performance portability
	5.4. Scaling results
	5.4.1. Weak scaling on uniform grids
	5.4.2. Strong scaling on uniform grid
	5.4.3. Strong scaling with multilevel grids

	6. Software engineering
	6.1. Development model
	6.2. Testing
	6.2.1. Simple, standard tests include unit testing, build testing, and coding style
	6.2.2. Regression tests
	6.2.3. Performance testing

	7. Current limitations and future enhancements

	8. Conclusions
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies

