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Abstract. The Kokkos based library Cabana, which has been devel-
oped in the Co-design Center for Particle Applications (CoPA), is used
for the implementation of Multi-Particle Collision Dynamics (MPCD),
a particle-based description of hydrodynamic interactions. It allows a
performance portable implementation, which has been used to study the
interplay between CPU and GPU usage on a multi-node system. As a
result, we see most advantages in a homogeneous GPU usage, but we
also discuss the extent to heterogeneous applications, using both CPU
and GPU concurrently.
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1 Introduction

The recent development of high-end parallel architectures shows a clear trend
to a heterogeneity of compute components, pointing towards a dominance of
General Purpose Graphics Processing Units (GPU) as accelerator components,
compared to the Central Processing Units (CPU). According to the Top 500
list [4], more than 25% of the machines have GPU support while the overall per-
formance share is more than 40%, i.e., heterogeneous cluster architectures have a
large impact for high compute performance. Often these nodes consist of only a
few multicore CPUs, while supporting 2–6 GPUs. In many applications one can
observe a trend that the most powerful component of the nodes, i.e. the GPUs,
is addressed, while the CPUs are used as administrating or data management
components. A reason might be the additional overhead in writing/maintaining
two different code versions for each architecture, as usually a CPU code cannot
simply run on a GPU or vice versa.

With the advent of performance portable programming models, such as
Kokkos [6] or Raja [16] it has become possible to use the same code base for
different architectures, most prominently including CPUs or GPUs. It might
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be tempting to use the full capacity of a compute-node concurrently, i.e. not
wasting compute resources because of the disparate character of the architec-
ture and programming model. In this case one encounters both different perfor-
mance characteristics of components and possibly a non-negligible data transfer
between components. This discrepancy might be targeted by load balancing
strategies which would need to take into account hardware and software specific
characteristics to achieve an overall performance gain.

In the present paper we consider a stochastic particle based method for the
simulation of hydrodynamic phenomena, i.e. the Multi-Particle Collision Dynam-
ics (MPCD) [8] algorithm and its implementation with Cabana [2,14,17], a
Kokkos based library. We first introduce the underlying MPCD method and
then describe the Cabana library. We then present some benchmark results and
finally draw conclusions from our findings and give some outlook for further
research.

2 Multi-Particle Collision Dynamics

MPCD is a particle-based description for hydrodynamic interactions in an incom-
pressible fluid. The method is based on a stochastic collision scheme in which
particles, that describe the simulated fluid are rotated in velocity space while con-
serving linear momentum and energy (variants exist which also conserve angular
momentum [8]). The method proceeds by sorting particles into a regular mesh
with grid cells of size of a characteristic length scale. In order to transport
momentum and energy across the system, the mesh is randomly shifted in each
time step, changing the local environment of each particle stochastically. For
each particle in a cell its relative velocity with respect to the center-of-mass
(com) velocity of the cell is computed. This velocity is split into a parallel and
perpendicular component with respect to a randomly oriented axis in the cell.
Consequently, the perpendicular component is rotated around that axis by a
fixed angle, which determines together with the particle mass and density, the
time step and the cell length the diffusion and viscosity of the fluid under consid-
eration. This procedure can be shown to mimic hydrodynamic behaviour and, in
a limiting case, enters into the Navier Stokes equations [8]. Using this procedure
the conservation of linear momentum and energy is guaranteed and can also
be coupled to embedded particles, simulated by other methods, e.g. molecular
dynamics, thereby coupling particle dynamics to a hydrodynamic medium [8,12].

From an algorithmic point of view, three main parts can be identified, i.e. (i)
the local identification of particles in the underlying cell structure and the com-
putation of com velocities of cells; (ii) the computation of the relative velocities
of particles with respect to the com velocity of a cell; (iii) rotation of perpen-
dicular velocity component of particles around a random axis. These parts will
be discussed separately in Sect. 3 in more detail in the context of the Cabana
implementation.
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Fig. 1. Illustration of the shifted collision cell grid (black, dashed) in comparison to
the static logical cell grid (black, solid). The grey cells mark the periodic images of the
shifted grid. (Color figure online)

3 Implementation with Cabana

The aim of the implementation was to write a code, that is performance portable
between clusters consisting of CPU and clusters with GPU nodes, which often
consist of one or two CPUs and a number of GPUs ranging from two to six.
Maintaining two or more codebases for all targeted architectures increases the
overhead time of, e.g., design or maintenance time, and calls for solutions which
allow a unified approach for various architectures.

For this reason performance portable programming models are attractive
for reducing time spent with porting codes to various architectures. One of the
more popular programming models in this regard is Kokkos [6], which provides
an abstraction layer for data structures, called Views, while providing differ-
ent ExecutionSpaces which can either be on the host (usually the CPU) or on
devices, i.e. GPUs or other accelerator cards, e.g. Intel KNLs. Kokkos uses differ-
ent backends to provide this performance portability, e.g. CUDA for the use of
NVIDIA GPUs or ROCm for the use of AMD GPUs. Furthermore, OpenMP or
PThread backends can be used among others to utilise multicore architectures
of CPUs.
Within the Exascale Computing Project (ECP) [5] funded by the Department
of Energy (DoE) in the USA, the Co-Design Center for Particle Applications
(CoPA) [3] developed a performance portable library, based on Kokkos, with
the main focus of supporting the development of particle and grid based codes
on HPC systems. Cabana not only provides data structures based on Kokkos
Views but also provides routines in order to facilitate data transfer between dif-
ferent processes in a distributed-memory environment, based on MPI.
Since the MPCD method is a mixture of a particle and a grid based method (due
to the requirement to sort the particles into cells), the implementation of the
MPCD code using Cabana was considered reasonable. In the rest of the section
the main points of the implementation will be presented.
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3.1 Collection of Particles in Cells

Before the com velocity for a cell can be calculated, it is necessary to identify
the particles that reside in each collision cell. One technique to achieve this
is the linked-cell list. Accordingly, all particles are checked and flagged with a
cell identifier to which they belong to. In addition, a (linked) list of particles
belonging to the cell is created. Listing 1.1 shows how such a list is created in
Cabana. The use of Cabana simplifies the creation of such a linked cell list, as
Cabana deals with the issues of creating a linked cell list in a multithreaded
environment, as described e.g. in [11] or [15].

Listing 1.1. Creation of the linked cell list of the shifted collision cell grid

// boundaries of spacial domains

double gridMin [3], gridMax [3];

for (int d = 0; d < 3; ++d)

{

gridMin[d] = domBorders (2*d) - (double)haloWidth

* cellSize(d) + offset(d);

gridMax[d] = domBorders (2*d+1) + (double)haloWidth

* cellSize(d) + offset(d);

}

// creating the linked cell list

// r = list of particle positions

// cellSize = size of linked cells (3d)

Cabana :: LinkedCellList <DeviceType >

linkedList( r, cellSize , gridMin , gridMax );

// permute the particle AoSoA to correspond to the cells

Cabana :: permute( linkedList , particles );

3.2 Communication of Required Information

As described in Sect. 2, it is necessary to compute the com velocity, i.e. the veloc-
ity in a zero momentum frame with regard to the local collision cell [7], in order
to calculate the collisions within each mesh cell, which requires all velocities and
masses of particles that reside within the given collision cell. The underlying par-
allel algorithm is based on a domain decomposition, where compute resources
administrate geometrical spatial regions which are connected. Since the underly-
ing mesh is shifted in each time step cells might be split among several domains.
To compute a unique value for the com velocity, one can either collect all par-
ticles together with their properties on a local domain or one can compute the
partial com velocities on each local domain and then reduce this value among
those processes which share the given cell.

The first of these methods has the advantage that since all particles are col-
lected on a single domain, the computation of the com velocity and the following
rotation of velocities can be executed without the need of additional communica-
tion steps in between. The disadvantage is that it requires the communication of
particle data in each time step, since the collision cell mesh needs to be shifted in
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each time step to avoid artefacts in the computation of the hydrodynamic inter-
actions. Listing 1.2 shows the necessary steps to prepare the particle migration
between domains. Shown here is a way to try to avoid unnecessary branching
while determining the target processes for particles. This is done by masking the
target processes with a base-3 number, where each ’bit’ indicates either a shift
down(0) or up (1) or residing in the domain’s boundary concerning that Carte-
sian direction. As an example a base-3 number of (201)3 would be assigned to a
particle leaving the local domain in positive x-direction and negative y-direction,
while stay in the same z-region, as the local domain. This way to determine tar-
get processes should improve execution on GPU, with the tertiary operator being
removed, in case that true is cast to integer one and false to integer zero.

Listing 1.2. Particle based communication with Cabana

Kokkos:: parallel_for(

Kokkos :: RangePolicy <ExecutionSpace >(0, nParticles),

KOKKOS_LAMBDA (const size_t i)

{

int dims = 1, index = 0;

// compute the direction of the neighbour the particle

// needs to be moved to and use dims to compute a

// base 3 mask:

// (xyz)_3 with 0 (left), 1 (remains), 2 (right)

// r = list of particle positions

for (int d = 2; d >= 0; --d)

{

index += dims *

( 1 - ((r(i,d) < domBorders (2*d))?1:0) +

((r(i,d) >= domBorders (2*d+1))?1:0) );

dims *= 3;

}

// tag the particle with the target neighbour rank

export_ranks(i) = neigs(index );

});

Kokkos::fence ();

// create particles distribution object and

// migrate particles to targets

Cabana:: Distributor <DeviceType > dist( mpiCart ,

export_ranks , neighbours );

Cabana:: migrate(dist , particles );

In contrast, the second method allows the use of a stable, halo-based commu-
nication scheme, where particles are not necessarily communicated in each time
step, but only when leaving a halo region around the local domain, allowing the
distributed computation of partial com velocities, that are reduced with a static
communication scheme. The result is then sent back to the domains sharing the
same cell. Listing 1.3 shows the required function calls to Cabana to do the halo
exchange. This work, related to mesh administration, is implemented in Cajita,
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which is part of Cabana. In addition, it provides methods for particle-grid inter-
actions, e.g. interpolation of particle properties to a grid, which is, however, not
used in this work. Furthermore, Cajita provides a domain-based load balancing
based on a tensor decomposition scheme, provided by the ALL library [9].

Listing 1.3. Grid based halo communication with Cabana

// create the halo communication object based

// on the Cajita grid

auto arrHalo = Cajita :: createHalo( *arrNode ,

Cajita :: NodeHaloPattern <3 >());

// [...] computation of com velocities

// bring the data to the halo cells

arrHalo ->gather(ExecutionSpace(), *arrNode );

// collect the data from the halo cells

arrHalo ->scatter(ExecutionSpace(),

Cajita :: ScatterReduce ::Sum(), *arrNode );

For the implementation of the two different communication schemes two dif-
ferent kinds of communication in Cabana were used. For the former method, the
particle-based one, Cabana provides a Distributor class, which allows the trans-
fer of particle data between processes. This requires that particles are tagged
with the target process, so that the Distributor object can generate a communi-
cation topology for this specific transfer. As a consequence this object needs to
be recreated in every time step, since the communication pattern in each time
step changes due the random shift of the collision cell grid and particle move-
ments across domain borders.

For the second communication pattern, reducing the partial results and redis-
tributing them, a halo-based communication on a grid is used. For this purpose,
two different grids are combined, i.e. a logical collision grid which is used for
communication and a linked-cell list, which sorts the particles into the shifted
collision cell grid. Since the number and size of mesh cells in each grid is iden-
tical, both grids can be perfectly matched onto each other. The particles are
sorted into the linked-cell list (Sect. 3.1) from where the com momentum of each
cell is computed. For collision cells, overlapping with domain borders (Fig. 1),
a halo-based communication reduces the partial results on the process which
administrates the logical cell. This process redistributes the reduced sum back
to each participating neighbour, where the rotations of velocities are computed
for residing particles. Since the number of cells is usually far smaller than the
number of particles, this leads to (i) a static communication scheme (for each
iteration step the same operations on the same amount of data) and (ii) a reduced
and constant amount of data that needs to be communicated.

During the development, it became apparent that the second communication
scheme leads to a better performance due to the reduced amount of transferred
data and the strongly reduced necessity to recreate communication patterns, due
to the stable communication scheme of the halo exchange (this needs to be done
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only once in the beginning or after possible load balancing steps, after which
the communication pattern is static). In addition, the transfer of particles can
be reduced to cases, where particles left the halo region surrounding the local
domain, instead of being required in every time step.

3.3 Rotation of Velocities

To simplify the computation of the velocity rotation, the linked cell list men-
tioned in Sect. 3.1 is used to sort particles into the correct cell of the collision cell
grid. Using the com velocity, gathered by one of the two previously described
methods, the linked-cell list provides the particles which belong to the given cell
and their velocity vector rotated.

Listing 1.4. Using the linked cell list from listing 1.1 to compute the com velocity

// Kokkos parallel_for iterates over

// all cells on local domain

// vcm = Kokkos::View containg the center

// of mass velocites for each

// collision cell

// v = Cabana::slice containing

// particle velocities

// m = Cabana::slice containing

// particles masses

Kokkos :: parallel_for(Kokkos :: RangePolicy <ExecutionSpace >

(0, linkedList.totalBins ()),

KOKKOS_LAMBDA( const size_t i)

{

int ix, iy, iz;

// computing the cartesian coordinates of the cell

linkedList.ijkBinIndex(i, ix, iy , iz);

int binOff = linkedList.binOffset(ix, iy , iz);

// compute com velocity

for (int d = 0; d < 4; ++d)

vcm(ix,iy,iz,d) = 0.0;

// computing com momentum and sum of mass

for (int n = 0; n < linkedList.binSize(ix,iy,iz); ++n)

{

for (int d = 0; d < 3; ++d)

vcm(ix,iy,iz,d) += v(binOff + n, d) *

m(binOff + n);

vcm(ix,iy,iz ,3) += m(binOff + n);

}

});

Kokkos ::fence ();
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Fig. 2. Performance comparison between existing Fortran implementation and new
Cabana implementation using multiple nodes.

4 Benchmarks and Discussion

For the benchmark runs simple fluid systems were used, i.e. a pure MPCD fluid
in 3d periodic boundary conditions. Each cubic collision cell has an edge length of
one length unit, while containing 〈Nc〉 = 10 particles on average. Each system in
the benchmarks is cubic with side length L (the edge length L given as the system
size in the following graphs, i.e. Fig. 2), from where the total number of particles
in a system is computed as N = L3 〈Nc〉. To check the performance of the newly
implemented code, it was compared to an existing Fortran implementation of
the MPCD algorithm [12,18].

The benchmarks were performed on the Juwels booster module [13] at Jülich
Supercomputing Centre, consisting of GPU nodes with four NVIDIA A100 cards
and two AMD EPYC 7402 processors, with 24 cores each. To maintain compa-
rability of the benchmarks the pure CPU runs were also performed on these
nodes. Since the GPU nodes are much more powerful in their computing capa-
bilities, we performed the benchmarks for the GPU runs on node numbers from
one to 16, doubling the node count each time. For the CPU, expecting longer
runtimes we chose to compare single node runs with runs on four nodes, while
also restricting the system size to a maximum edge length of 128 while for the
GPU runs we performed the benchmarks to a maximum edge length of 512. The
edge length directly influences the number of particles in the simulation, since
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Table 1. Tables of runtimes for the different implementations. Empty cells indicate
combinations of node numbers and system sizes, for which additional measurements
did not show additional information. All runtimes presented are given in seconds.

(a) Runtimes for GPU C++ variant, using 4 GPUs on each node.

size 1 node 2 nodes 4 nodes 8 nodes 16 nodes

32 52.96 59.47 53.36

64 75.55 86.48 78.77

128 162.88 130.27 107.29 92.11

256 652.25 335.12 211.51 182.18 144.60

512 5897.44 2774.35 1429.14 648.252 327.49

(b) Runtimes for CPU variants, Fortran (F90) and the C++ based
variants, i.e. OpenMP-based (OMP) or serial, i.e. no hybrid
parallelization, using one or four nodes (N). OMP uses 8 MPI ranks with
6 threads each on a node, the Fortran and serial version 48 MPI ranks per
node. Only system sizes up to edge length 128 are presented due to the
longer runtimes.

size F90 1 N F90 4 N OMP 1 N OMP 4 N serial 1 N serial 4 N

32 5.36 2.75 42.62 16.37 38.33 15.06

64 49.59 11.20 284.73 78.79 221.38 69.06

128 819.06 132.06 2268.80 555.42 1967.42 474.67

there are about l3 collision cells in the system, with l being the edge length of
the system, each collision cell containing ten particles on average.

As backends for Kokkos were the AMD and Ampere70 used, since these
corresponded best to the available hardware. No further optimization on the
basis of compiler flags was attempted yet due to time constraints, but these tests
will be performed in the future. Table 1 and Fig. 2 show results for four different
benchmarks: (i) C++/Kokkos implementation with GPU variant (Table 1a and
Fig. 2b); (ii) C++/Kokkos variant with OpenMP (Table 1b and Fig. 2c); (iii)
C++/Kokkos variant with serial backend and (iv) the previous implementation
of the MPCD algorithm in Fortran (Table 1b and Fig. 2a) for comparison with
the new implementation.

The original Fortran code shows a quite good scaling behaviour for all studied
cases (edge lengths L ∈ [32, 512]), as can be seen in Fig. 2a. In comparison to that
the scaling behaviour of the GPU variant of the C++ implementation shows for
the smaller system sizes a super-linear scaling behaviour, before reaching linear
behaviour at system sizes 256 and 512, indicating that smaller sizes not fully
utilise the GPU (Fig. 2b).

When comparing the performance of the Fortran implementation (Fig. 2a)
and the CPU based variants of the C++ version, i.e. OpenMP based or serial, it
can be seen that Fortran achieves much better results (Figs. 2c, 2d). An expla-
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nation for this behaviour still needs to be analysed in more depth. But first
results point towards a different level of optimization (which is not the main
focus of this article). In contrast, the GPU variant is able to outperform the
Fortran implementation given sufficiently large system sizes, as can be seen in
Fig. 2e, comparing the benchmark results on a single node, respectively. Here
only the results for system sizes 32 and 64 are shown, since the measurement
strongly hint that for larger system sizes the gap between hybrid execution and
pure GPU execution will only widen.

Furthermore, it was tested on a single node if the combination of GPU and
CPU could result in a better performance than only GPU computations. Due to
the obtained performance of the CPU-based C++ variants, the results indicate
at this stage no performance gain for hybrid execution (Fig. 2f). In case of a per-
formance improvement of the CPU-based variants, this result might change for
smaller system sizes. Note that for small systems load balancing GPU and CPU
ranks can improve the overall performance for hybrid execution significantly, but
not sufficiently in order to outperform either pure CPU or GPU. This does not
lead to a recommendation of a hybrid execution model at this stage.

5 Conclusion and Outlook

Considering the benchmark results of the new implementation of the MPCD
code the following conclusions can be drawn:

(i) It is possible to implement a scalable MPCD algorithm with Cabana, that
for large enough systems is faster on GPUs than the existing Fortran imple-
mentation. The CPU variant of the Cabana implementation needs to be
improved upon to bring the performance closer to the one of the Fortran
code.

(ii) Load balancing between CPU and GPU can support hybrid execution, but
was not found to increase performance beyond the one of pure CPU or
GPU usage.

(iii) The porting effort from a pure CPU variant to a multi-architecture variant
was significantly decreased by using Cabana, which offers an architecture
independent development and code implementation which provides a uni-
fied and transparent view for the programmer. Porting effort is therefore
dramatically reduced by maintaining performance (which was not the focus
here, but which is demonstrated for other use cases [1,6,10]).

(iv) The implementation of the MPCD algorithm allows further investigation of
coupled simulations of MPCD fluids with embedded Molecular Dynamics
(MD) systems, e.g. polymer chains. For this, an implementation based on
a unified formulation of MD and MPCD, as described, e.g., in [8,12], is
required. Since the ratio of MD- to MPCD particles is often small, this
could profit from a hybrid implementation and execution model, which
invites to further investigations, including execution models for modular
supercomputing.
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