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A B S T R A C T

The Kokkos based library Cabana, which has been developed in the Co-design Center for Particle Applications
(CoPA), is used for the implementation of Multi-Particle Collision Dynamics (MPCD), a particle-based
description of hydrodynamic interactions. Cabana allows for a function portable implementation, which has
been used to study the interplay between CPU and GPU usage on a multi-node system as well as analysis of
said interplay with performance analysis tools. As a result, we see most advantages in a homogeneous GPU
usage, but we also discuss the extent to which heterogeneous applications might be more performant, using
both CPU and GPU concurrently.
1. Introduction

The recent development of high-end parallel architectures shows
a clear trend to a heterogeneity of compute components, pointing
towards a dominance of General Purpose Graphics Processing Units
(GPU) as accelerator components, compared to the Central Processing
Units (CPU). According to the Top 500 list [1], more than 25% of the
machines have GPU support while the overall performance share is
more than 40%, i.e., heterogeneous cluster architectures have a large
impact for high compute performance. Often these nodes consist of only
a few multicore CPUs, while supporting 2–6 GPUs. In many applications
one can observe a trend that the most powerful component of the nodes,
i.e. the GPUs, is addressed, while the CPUs are used as administrating
or data management components. A reason might be the additional
overhead in writing/maintaining two different code versions for each
architecture, as usually a CPU code cannot simply run on a GPU or vice
versa.

With the advent of function and performance portable programming
models, such as Kokkos [2] or Raja [3] it has become possible to use the
same code base for different architectures, most prominently including
CPUs or GPUs. It might be tempting to use the full capacity of a
compute-node concurrently, i.e. not wasting compute resources because
of the disparate character of the architecture and programming model.
In this case one encounters both different performance characteristics
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of components and possibly a non-negligible data transfer between
components. This discrepancy might be targeted by load balancing
strategies which would need to take into account hardware and soft-
ware specific characteristics to achieve an overall performance gain.
But regardless of the possible improvements, it is expected that if
there is a benefit for heterogeneous execution, this might apply only
to smaller system sizes, where due to the under-utilisation of the GPU,
it might be advantageous to avoid data transfer to the GPU, while the
CPU can compute the necessary calculations in a similar timeframe as
the GPU. This is of interest for scientific use cases where not the spatial
size of the system is important, but rather the length for which the
system can be simulated, due to required equilibration or minimisation
effects.

In the present paper we consider a stochastic particle based method
for the simulation of hydrodynamic phenomena, i.e. the Multi-Particle
Collision Dynamics (MPCD) [4] algorithm and its implementation with
Cabana [5–8], a Kokkos based library. We first introduce the underlying
MPCD method and then describe the Cabana library. Furthermore, we
present benchmarking results, present analyse results with performance
analysis tools and draw conclusions from our findings before giving
some outlook for further research.
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2. Multi-particle collision dynamics

MPCD is a particle-based description for hydrodynamic interactions
in an incompressible fluid. The method is based on a stochastic collision
scheme in which particles, that describe the simulated fluid are rotated
in velocity space while conserving linear momentum and energy (vari-
ants exist which also conserve angular momentum [4]). The method
proceeds by sorting particles into a regular mesh with grid cells of size
of a characteristic length scale. In order to transport momentum and
energy across the system, the mesh is randomly shifted in each time
step, changing the local environment of each particle stochastically.
For each particle in a cell its relative velocity with respect to the
centre-of-mass (com) velocity

(𝑐)
𝑐𝑚 = 1

𝑀

𝑁 (𝑐)
∑

𝑛=1
𝑣𝑖 ⋅ 𝑚𝑖 , 𝑀 =

𝑁 (𝑐)
∑

𝑛=1
𝑚𝑖 (1)

f the cell is computed. The com velocity 𝑣𝑐𝑚 is computed by summing
p the momenta of each particle in cell, with the cell containing 𝑁 (𝑐)

articles, and dividing this cell momentum by the total particle mass
f the cell. This velocity is split into a parallel and perpendicular
omponent with respect to a randomly oriented axis in the cell. Con-
equently, the perpendicular component is rotated around that axis by
fixed angle, which determines together with the particle mass and

ensity, the time step and the cell length the diffusion and viscosity of
he fluid under consideration. This procedure can be shown to mimic
ydrodynamic behaviour and, in a limiting case, enters into the Navier
tokes equations [4]. Using this procedure the conservation of linear
omentum and energy is guaranteed and can also be coupled to em-

edded particles, simulated by other methods, e.g. molecular dynamics,
hereby coupling particle dynamics to a hydrodynamic medium [4,9].

From an algorithmic point of view, three main parts can be identi-
ied, these are:

(i) the local identification of particles in the underlying cell structure
and the computation of com velocities of cells

(ii) the computation of the relative velocities of particles with respect
to the com velocity of a cell

iii) rotation of perpendicular velocity component of particles around
a random axis

The implementation in Cabana of these three parts will be discussed
eparately in Section 3 in more detail. Since the performance portability
ramework Kokkos is the basis of the Cabana library, one could study
wo related questions: (i) what is the overhead, i.e. performance loss
f using a library and (ii) what is the efficiency in terms of perfor-
ance portability, compared with native optimised implementations,

.g. OpenMP + CUDA on NVIDIA based GPU nodes or OpenMP +
ocM on AMD based GPU nodes. In this paper, however, the focus
s put on the investigation of function portability, i.e. ease of use of
unning the code on different architectures. The analysis of benchmarks
n this paper is driven from the motivation of using Kokkos for the
rovision of a base implementation, which can be easily executed on
ifferent types of architectures without the need of rewriting the code.
.e. we do not specifically consider a given metric for performance
ortability but show that a variety of architectures can be addressed
y using the same code base. Nevertheless, we will show and compare
erformance of executions on the different architectures. The impor-
ant question of performance comparison between Kokkos-based and
ptimised implementations.

. Implementation with Cabana

The aim of the implementation was to write a code, that is function
ortable between clusters consisting of CPU and clusters with GPU
odes, which often consist of one or two CPUs and a number of GPUs
anging from two to six. Also, it might be that different clusters use
2

rchitecture from different vendors, which might require different types
f programming languages to target these differing architectures. Main-
aining two or more codebases for all targeted architectures increases
he overhead time of, e.g., design or maintenance time, and calls for
olutions which allow a unified approach for various architectures. In
ddition, maintaining different codebases can lead to introduction of
nintended differences in those, making comparisons between each
ther difficult.

For this reason performance portable programming models are at-
ractive for reducing time spent with porting codes to various archi-
ectures. One of the more popular programming models in this regard
s Kokkos [2], which provides an abstraction layer for data structures,
alled Views, while providing different ExecutionSpaces which can either
e on the host (usually the CPU) or on devices, i.e. GPUs or other
ccelerator cards, e.g. Intel KNLs. Kokkos uses different backends to
rovide this performance portability, e.g. CUDA for the use of NVIDIA
PUs or ROCm/HIP for the use of AMD GPUs. Furthermore, OpenMP
r PThread backends can be used among others to utilise multicore
rchitectures of CPUs. An important detail here is, that only one kernel
eeds to be written, which can then be passed to different (compiled)
ackends.

Within the Exascale Computing Project (ECP) [10] funded by the
epartment of Energy (DoE) in the USA, the Co-Design Center for
article Applications (CoPA) [11] developed a performance portable
ibrary, based on Kokkos, with the main focus of supporting the devel-
pment of particle and grid based codes on HPC systems. Cabana not
nly provides data structures based on Kokkos Views but also provides
outines in order to facilitate data transfer between different processes
n a distributed-memory environment, based on MPI. Additionally, the
ajita sub-library provides tools for the management of grid in parallel
nvironments, providing routines for data transfer and distribution.

Since the MPCD method is a mixture of a particle and a grid based
ethod (due to the requirement to sort the particles into cells), the

mplementation of the MPCD code using Cabana was considered rea-
onable. In the rest of the section the main points of the implementation
ill be presented, based on the previously identified main points of the
PCD algorithm.

.1. Collection of particles in cells

Before the com velocity for a cell can be calculated, it is necessary to
dentify the particles that reside in each collision cell. One technique to
chieve this is the linked-cell list. Accordingly, all particles are checked
nd flagged with a cell identifier to which they belong to. In addition, a
linked) list of particles belonging to the cell is created. Listing 1 shows
ow such a list is created in Cabana. The use of Cabana simplifies the
reation of such a linked cell list, as Cabana deals with the issues of
reating a linked cell list in a multithreaded environment, as described
.g. in [12] or [13].

Listing 1: Creation of the linked cell list of the shifted collision cell
grid

// boundaries of spacial domains
double gridMin[3], gridMax[3];
for (int d = 0; d < 3; ++d)
{

gridMin[d] = domBorders(2*d) -
(double)haloWidth
* cellSize(d) +
offset(d);

gridMax[d] = domBorders(2*d+1) +
(double)haloWidth
* cellSize(d) +
offset(d);

}
// creating the linked cell list

// r = list of particle positions



Parallel Computing 117 (2023) 103033R. Halver et al.

3

a
n
i
s
a
L
b
b
d
‘

d
t
p
b
i

// cellSize = size of linked
// cells (3d)
Cabana::LinkedCellList <DeviceType >

linkedList( r, cellSize, gridMin,
gridMax );

// permute the particle AoSoA to
// correspond to the cells
Cabana::permute( linkedList ,

particles );

.2. Communication of required information

As described in Section 2, it is necessary to compute the com
velocity, i.e. the velocity in a zero momentum frame with regard to
the local collision cell [14], in order to calculate the collisions within
each mesh cell, which requires all velocities and masses of particles
that reside within the given collision cell. The underlying parallel algo-
rithm is based on a domain decomposition, where compute resources
administrate geometrical spatial regions which are connected. Since the
underlying mesh is shifted in each time step cells might be split among
several domains. To compute a unique value for the com velocity, one
can either collect all particles together with their properties on a local
domain or one can compute the partial com velocities on each local
domain and then reduce this value among those processes which share
the given cell.

The first of these methods has the advantage that since all particles
are collected on a single domain, the computation of the com velocity
nd the following rotation of velocities can be executed without the
eed of additional communication steps in between. The disadvantage
s that it requires the communication of particle data in each time step,
ince the collision cell mesh needs to be shifted in each time step to
void artefacts in the computation of the hydrodynamic interactions.
isting 2 shows the necessary steps to prepare the particle migration
etween domains. Shown here is a way to try to avoid unnecessary
ranching while determining the target processes for particles. This is
one by masking the target processes with a base-3 number, where each

bit’ indicates either a shift down(0) or up (1) or residing in the domain’s
boundary concerning that Cartesian direction. As an example a base-
3 number of (201)3 would be assigned to a particle leaving the local
omain in positive 𝑥-direction and negative 𝑦-direction, while stay in
he same z-region, as the local domain. This way to determine target
rocesses should improve execution on GPU, with the tertiary operator
eing removed, in case that true is cast to integer one and false to
nteger zero.

Listing 2: Particle based communication with Cabana
Kokkos::parallel_for(

Kokkos::RangePolicy <ExecutionSpace >
(0, nParticles),

KOKKOS_LAMBDA (const size_t i)
{

int dims = 1, index = 0;
// compute the direction of the
// neighbour the particle needs
// to be moved into and use dims
// to compute a base 3 mask:
// (xyz)_3 with 0 (left),
// 1 (remains),
// 2 (right)
// r = list of particle
// positions
for (int d = 2; d >= 0; --d)
{

index += dims *
3

( 1 -
((r(i,d) <
domBorders(2*d))?1:0) +
((r(i,d) >=
domBorders(2*d+1))?1:0)

);
dims *= 3;

}
// tag the particle with the
// target neighbour rank
export_ranks(i) = neigs(index);

});
Kokkos::fence();

// create particles distribution object and
// migrate particles to targets
Cabana::Distributor <DeviceType > dist( mpiCart,

export_ranks , neighbours );
Cabana::migrate(dist, particles);

In contrast, the second method allows the use of a stable, halo-based
communication scheme, where particles are not necessarily communi-
cated in each time step, but only when leaving a halo region around
the local domain, allowing the distributed computation of partial com
velocities, that are reduced with a static communication scheme. The
result is then sent back to the domains sharing the same cell. Listing 3
shows the required function calls to Cabana to do the halo exchange.
This work, related to mesh administration, is implemented in Cajita,
which is part of Cabana. In addition, it provides methods for particle-
grid interactions, e.g. interpolation of particle properties to a grid,
which is, however, not used in this work. Furthermore, Cajita pro-
vides a domain-based load balancing based on a tensor decomposition
scheme, provided by the ALL library [15].

Listing 3: Grid based halo communication with Cabana
// create the halo communication object based
// on the Cajita grid
auto arrHalo = Cajita::createHalo( *arrNode,

Cajita::NodeHaloPattern <3>());
// [...] computation of com velocities
// bring the data to the halo cells
arrHalo->gather(ExecutionSpace(), *arrNode);
// collect the data from the halo cells
arrHalo->scatter(ExecutionSpace(),

Cajita::ScatterReduce::Sum(), *arrNode);

For the implementation of the two different communication
schemes two different kinds of communication in Cabana were used.
For the former method, the particle-based one, Cabana provides a
Distributor class, which allows the transfer of particle data between pro-
cesses. This requires that particles are tagged with the target process,
so that the Distributor object can generate a communication topology
for this specific transfer. As a consequence this object needs to be
recreated in every time step, since the communication pattern in each
time step changes due the random shift of the collision cell grid and
particle movements across domain borders. Analysis of this part of
the communication scheme showed that due to implementation of the
particle transfer routine in Cabana in each communication step the
required buffers had to be newly allocated and the communication pat-
tern was established anew everytime. This led to a sizeable overhead,
when particle transfers between different processes were conducted.
Implementing a manual particle transfer, in which particle buffers were
reused and resized if necessary, improved the performance in that part.
Discussions with developers of the Cabana library led to the plan to
include this feature into a future release.

For the second communication pattern, reducing the partial results

and redistributing them, a halo-based communication on a grid is
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Fig. 1. Illustration of the shifted collision cell grid (black, dashed) in comparison to
the static logical cell grid (black, solid). The grey cells mark the periodic images of
the shifted grid.

used. For this purpose, two different grids are combined, i.e. a logical
collision grid which is used for communication and a linked-cell list,
which sorts the particles into the shifted collision cell grid. Since the
number and size of mesh cells in each grid is identical, both grids can
be perfectly matched onto each other. The particles are sorted into the
linked-cell list (Section 3.1) from where the com momentum of each
cell is computed. For collision cells, overlapping with domain borders
(Fig. 1), a halo-based communication reduces the partial results on the
process which administrates the logical cell. This process redistributes
the reduced sum back to each participating neighbour, where the
rotations of velocities are computed for residing particles. Since the
number of cells is usually far smaller than the number of particles, this
leads to (i) a static communication scheme (for each iteration step the
same operations on the same amount of data) and (ii) a reduced and
constant amount of data that needs to be communicated.

During the development, it became apparent that the second com-
munication scheme leads to a better performance due to the reduced
amount of transferred data and the strongly reduced necessity to recre-
ate communication patterns, due to the stable communication scheme
of the halo exchange (this needs to be done only once in the beginning
or after possible load balancing steps, after which the communication
pattern is static). In addition, the transfer of particles can be reduced to
cases, where particles left the halo region surrounding the local domain,
instead of being required in every time step.

3.3. Rotation of velocities

To simplify the computation of the velocity rotation, the linked cell
list mentioned in Section 3.1 is used to sort particles into the correct
cell of the collision cell grid. Using the com velocity, gathered by one
of the two previously described methods, the linked-cell list provides
the particles which belong to the given cell and their velocity vector
rotated.

Listing 4: Using the linked cell list from listing 1 to compute the com
velocity

// Kokkos parallel_for iterates over
// all cells on local domain
// vcm = Kokkos::View containing the
// centre of mass velocities
// for each collision cell
// v = Cabana::slice containing
// particle velocities
// m = Cabana::slice containing
4

o

// particles masses
Kokkos::parallel_for(

Kokkos::RangePolicy <ExecutionSpace >
(0, linkedList.totalBins()),
KOKKOS_LAMBDA( const size_t i)
{

int ix, iy, iz;
// computing the cartesian
// coordinates of the cell
linkedList.ijkBinIndex(i,

ix, iy, iz);
int binOff =

linkedList.binOffset(ix, iy, iz);
// compute com velocity
for (int d = 0; d < 4; ++d)

vcm(ix,iy,iz,d) = 0.0;
// computing com momentum and sum of mass
for (int n = 0;

n < linkedList.binSize(ix,iy,iz);
++n)

{
for (int d = 0; d < 3; ++d)

vcm(ix,iy,iz,d) += v(binOff + n, d) *
m(binOff + n);

vcm(ix,iy,iz,3) += m(binOff + n);
}

});
Kokkos::fence();

.4. First analysis and improvements

During the development and implementation of the code and per-
orming first benchmarks, it was noticed that the performance was
ot showing expected behaviour. When using small system sizes the
untimes for runs using GPUs were massively slower than expected.

Using performance analysis tools, such as NVIDIA Nsight Com-
ute [16], it was discovered, that one problem of the first implemen-
ation was the use of unified memory for data storage, especially for
he particle data. This led to problems during the transfer of data, as
ccording to the analysis results, data was transferred between host and
evice a lot more than expected. After restructuring the code to mainly
se device based memory, these unintended transfers vanished and
here applicable device-to-device communication between different
PUs was used. For upcoming versions of Kokkos we will reinvestigate,
hether the discrepancy between the different memory models is still
resent or if the issue has been solved.

In Fig. 2 the results for one of these benchmarks is shown. It can be
een that for the implementation using unified memory, the majority
f time is spent in the halo exchange, which takes place in every time
tep. The shown example is a quasi-static fluid, so no particles are
ransferred in the scope of the simulation between different processes.
t is assumed that this would increase the discrepancies between the
wo implementations further.

. Benchmarks and discussion

For the benchmark runs basic fluid systems were used, i.e. a pure
PCD fluid in 3d periodic boundary conditions. Each cubic collision

ell has an edge length of one length unit, while containing ⟨𝑁𝑐⟩ = 10
articles on average. Each system in the benchmarks is cubic with side
ength 𝐿 the edge length 𝐿 given as the system size in the following
raphs, i.e. Fig. 3, from where the total number of particles in a system
s computed as 𝑁 = 𝐿3

⟨𝑁𝑐⟩.
The Juwels booster module [17] at Jülich Supercomputing Centre

onsists of GPU nodes with four NVIDIA A100 cards and two AMD
PYC 7402 processors, with 24 cores each. To maintain comparability

f the benchmarks the pure CPU runs were also performed on these
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Fig. 2. Benchmarks for different memory models used in the implementation for a
system of base length 32.

nodes. In addition testbed nodes on Jureca-DC were used, which pro-
vided access to two additional hardware architectures, first the AMD
MI 250 GPU, second to an ARM platform consisting of Ampere Altra
Q80-30 CPUs.

The code was compiled with the GNU compiler suite version 11.2,
OpenMPI v. 4.1.2, Kokkos 3.5.00 and Cabana v. 1.0-dev. Kokkos and
Cabana were configured with the ‘‘RelWithDebugInfo’’ settings in order
to be able to backtrace possible errors during execution. No further
compiler flag based optimisation has been taken into account since our
main focus was the comparison of runtime and scalability of the func-
tion portable implementation of the Kokkos/Cabana code. In future we
plan a more in depth comparison of the Kokkos/Cabana implementa-
tion against machine optimised versions of the code, e.g. using OpenMP
+ CUDA, OpenACC + GPU offloading and vendor specific compilers.
This will provide further information of a possible performance loss of
a Kokkos/Cabana implementation in comparison to an optimised one.

As backends, the AMD and Ampere70 flags were used in Kokkos
since these fit to the architecture of the Juwels booster nodes. For
the benchmark runs on the Jureca-DC testbed nodes, the VEGA90A
5

Fig. 3. Benchmarks comparing different modes of execution and different system sizes
to each other. All benchmarks are run on a single node.

Fig. 4. Benchmarks comparing different modes of execution one a single node for the
system with system length 32, using different subsets of CPUs and GPUs, as well as
combinations.

backend was used for the runs on the AMD MI 250 card, while for the
ARM node the ARMv81 backend flag was employed.

Due to the limited availability of AMD profiling features on the
benchmark systems, roofline model measurements were undertaken
with Intel Advisor on the cluster part of Juwels, using the Intel Xeon
Platinum 8168 processors. The resulting roofline model is reported
in Fig. 6. Results show that the code is mainly memory bound due
to many accesses to DRAM while on the same time showing only a
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Fig. 5. Strong scaling behaviour of the Cabana code using multiple NVIDIA A100
GPUs for different systems sizes (edge length 32 to 512). Up to 4 GPUs using a single
node, then 4 GPUs per node. The largest test case was not run on a single node due
insufficient memory.

low algorithmic intensity (compute operations per transferred byte).
This can be traced back to the main characteristic of the method and
algorithm. Since particles have to be sorted in every timestep into a
shifted mesh (cmp. Section 2) data reusage is minimal. This could be
improved by increasing data locality and to combine different compute
kernels, which, on the other side would require a reformulation of
the underlying algorithm, i.e. a rewrite of the code. An additional
performance analysis with Nsight Compute on the A100 of the booster
partition of Juwels has been conducted, which showed a comparable
result, i.e. performance limited by DRAM bandwidth. In Fig. 7 the
roofline model for the A100 is presented.

In order to improve code performance in future releases, changes
to the algorithm are required, which enable vectorisation and improve
memory access strategies. The best performing kernels in the roofline
models are those, where particles are accessed linearly in memory and
then processed independently of each other, e.g. the integration of
particle velocities or checks if periodic boundary corrections need to
be applied.

Additional benchmarks were conducted on a single node with a
constant number of processes used:

ARM 4 processes with 20 threads
MI250 8 processes using 4 AMD MI 250 GPUs
A100 4 processes using a single A100 GPU
EPYC 48 processes with two threads each
A100 + x 4 processes each employing an A100 and 𝑥 ∈ {4, 44}

processes on AMD EPYC CPUs running with two
threads each

Results of the benchmarks are reported in Fig. 3. In the figure,
six different bars each represent a different execution method (cmp.
text above). All bars are based on runtimes measured with the Cabana
implementation. MI250 and A100 are runtimes measured for cases
where code is executed only on the respective GPUs. It can be seen that
for the system sizes under consideration, both types of GPUs are not
6

Fig. 6. Roofline model from Intel Advisor for Xeon nodes on Juwels cluster part. The
measured kernel orient around the lowest roofline, indicating the DRAM bandwidth of
103.8 GB/s.

Fig. 7. Roofline model from Nsight Compute for NVIDIA A100 on Juwels Booster. In
this case the measured kernels are also bounded by the lowest memory bandwidth
roofline.

fully utilised. This can be concluded from Fig. 5, where it can be seen
that for the small system sizes, runtimes for multiple GPUs (A100s) are
not decreasing, but, in contrast, even increase. This observation can be
related to an increase in communication. For system sizes larger than
1283 it can be seen that a single A100 can be utilised until hitting the
bandwidth limitation, discussed before. I.e. using additional A100s now
can decrease the runtime. For sufficiently large systems good scalability
is found for strong scaling on the A100 cards. Due to the fact that only
one node with MI250s was available at the time of writing this article
no strong scaling results for this architecture could be gathered.

Executing the code on a combination of A100s and processes on
EPYC CPUs resulted in an execution time, that is oriented towards the
execution time of the slower of both architectures, since this is the
bottleneck for this kind of combined execution. Benchmarks for small
system sizes show execution times, which are on par with executions on
single hardware architectures (see Fig. 4). On the other side, for large
system sizes, the runtime increases such that a combined execution is
not competitive with respect to the execution on the faster architecture
alone, usually the GPU. Also, it can be seen that using only four
processes on EPYC CPUs results in shorter runtimes than using all
remaining available cores on the node (i.e. 44 cores).

The reason for that is the increased communication overhead and
restricted process grid topology. For larger system sizes the number
of CPU processes gets irrelevant. The huge difference in computing
power between the different architectures becomes dominant. In order
to balance the compute load between CPU and GPU, compute domains
on the devices have to be adjusted in size according to relative compute
power. As a result, balancing can only nearly be achieved by assigning
domains of the smallest possible size to the CPU processes. Accordingly
the remaining share is distributed to the GPU processes. Due to the
topological restriction of the process grid, this forms a single plane of
GPU processes in which the majority of the system is divided into a
2 × 2 × 1 grid. As a consequence, the processes on the EPYC CPUs
are also put into a 2 × 2 × 𝑛 grid (𝑛 = 1 for four, 𝑛 = 11 for
𝑧 𝑧 𝑧



Parallel Computing 117 (2023) 103033R. Halver et al.
44 EPYC processes). The larger the number of used processes on the
EPYC CPU the more disadvantageous the distribution becomes. Since
the size of the CPU processes in the last dimension is defined as the
minimum possible size which a domain can have without necessitating
halo exchanges with over-next neighbours, the CPU processes become
really thin domains with a huge surface over which particle information
needs to be exchanged. This is true for both the halo exchanges as
well as the particle exchanges due to particle movement. This results
in unnecessary overhead and should therefore be avoided.

A possible solution to this issue is to subdivide the two parts of the
system in a different manner. E.g. a subdivision of the GPU domains
into a 2 × 2 × 1 grid, while using 40 processes on the EPYC CPU in,
e.g., a 8 × 5 × 1 distribution which results in a better communication
surface between the CPUs. Also this allows to allocate a smaller share
of the system to the CPUs, in order to better balance the load between
the two partitions, since the stacking of CPU domains requires a larger
share of the system to be assigned to the CPU part. This improvement
could not yet be implemented, since Cabana does not yet support
non-uniform process grids.

5. Conclusion and outlook

The target of this work was to investigate if combined execution
of the MPCD code on heterogeneous can improve the performance
that can be achieved on such a node. Furthermore, the parallel scaling
behaviour of the Cabana implementation was analysed. While it was
seen that the code scales reasonably well, given a sufficiently large
test case, both on CPU and GPU, it was also shown that in the current
implementation it was not possible to improve the performance of the
code by combining GPU and CPU execution on heterogeneous nodes.
It remains to be seen if this can be improved by implementing the
possibility to provide CPU and GPU partitions of the code with different
topologies for domain decomposition, which will be an interesting
point of research.

Another future point of investigation will be the addition of Molec-
ular Dynamics (MD) simulation to the MPCD implementation, so that
embedded systems can be simulated. Since MD and MPCD show differ-
ent scaling behaviour it might be useful to distribute the computation
of MD and MPCD between GPU and CPU. This can either be done with
the model shown in this paper, running the code on the same node and
using the GPU and CPU resources, or could be achieved by modular
execution on different computing system partitions.
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