
DRAFT
FleCSI: Flexible Computational Science Infrastructure1

Benjamin Bergen 1, Nick Moss2, Irina Demeshko 3, Davis Herring1, Marc2

Charest 4, Julien Loiseau 1, Navamita Ray 1, Jonathan Graham 1,3

Hartmut Kaiser 5, Li-Ta Lo 1, Karen Tsai 1, Charles Ferenbaugh 1,4

Richard Berger 1, John Wohlbier 6, Jonas Lippuner 2, Wei Wu 3,5

Andrew Reisner 1, Christoph Junghans 1, Scott Pakin 1, Brendan K.6

Krueger 1, Lukas Spies 7, Sumathi Lakshmiranganatha 1, Max7

Ortner 2, Pascal Grosset 1, David Gunter2, Maxim Moraru 1, Galen8

Shipman1, Jiajia Waters 1, Scot Halverson3, Onur Çaylak 2, Peter9

Brady 1, Philipp V. F. Edelmann 1, Mason Delan2, Brandon Keim 8,10

Christopher Malone1, Alex Villa 9, Daniel Holladay 1, Dani Barrack 2,11

Nikunj Gupta 10, Ondřej Čertík4, Robert Bird 2, and Melissa12

Rasmussen 11
13

1 Los Alamos National Laboratory, USA 2 Independent researcher 3 NVIDIA, USA 4 Microsoft, USA 514

Louisiana State University, USA 6 Software Engineering Institute, USA 7 INRIA, France 8 University at15

Buffalo, USA 9 University of California, Merced, USA 10 Databricks, USA 11 Stony Brook University,16

USA17

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor:

Submitted: 05 August 2025
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary18

FleCSI (Bergen et al., 2021) is a modern C++ framework designed to support the development19

of multiphysics simulations. It provides a task-based programming model that unifies shared-20

and distributed-memory programming. FleCSI provides high performance, flexibility, and21

portability across heterogeneous computing architectures.22

Heterogeneous hardware

CUDA, OMP, . . .

Kokkos
Legion HPX MPI

FleCSISpecialization

Application

Figure 1: The FleCSI software ecosystem

Bergen et al. (2025). FleCSI: Flexible Computational Science Infrastructure. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 8756.
https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0008-1802-4285
https://orcid.org/0009-0001-1035-7260
https://orcid.org/0000-0002-2818-1232
https://orcid.org/0000-0002-2116-2493
https://orcid.org/0000-0002-8235-1706
https://orcid.org/0000-0003-1862-0526
https://orcid.org/0000-0002-8712-2806
https://orcid.org/0000-0001-6244-9696
https://orcid.org/0000-0003-2848-832X
https://orcid.org/0000-0001-7908-8567
https://orcid.org/0000-0002-3044-8266
https://orcid.org/0009-0000-8749-2762
https://orcid.org/0000-0002-5936-3485
https://orcid.org/0000-0002-2750-6365
https://orcid.org/0000-0002-5325-2266
https://orcid.org/0000-0003-0925-1458
https://orcid.org/0000-0002-5220-1985
https://orcid.org/0000-0002-8275-9277
https://orcid.org/0000-0002-2063-7637
https://orcid.org/0000-0001-8369-9387
https://orcid.org/0000-0001-9016-3708
https://orcid.org/0000-0003-2192-3843
https://orcid.org/0000-0001-7213-089X
https://orcid.org/0000-0002-6517-4445
https://orcid.org/0000-0003-2410-7411
https://orcid.org/0000-0002-4906-2195
https://orcid.org/0000-0001-7019-9578
https://orcid.org/0009-0006-8688-3642
https://orcid.org/0009-0000-3422-8626
https://orcid.org/0000-0002-0673-9741
https://orcid.org/0000-0002-4881-0921
https://orcid.org/0000-0003-0525-3667
https://orcid.org/0000-0003-1228-498X
https://orcid.org/0000-0002-0297-0313
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/8756
https://github.com/flecsi/flecsi
https://doi.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
Statement of need23

FleCSI is designed to support the development of multiphysics simulations through a flexi-24

ble, task-based programming model that enables performance portability across distributed,25

heterogeneous systems. It advances prior work by integrating dynamic task scheduling, data26

abstraction, and backend interoperability within a unified C++ framework. Compared to27

related systems like Uintah (Meng et al., 2012) and MPC (Pérache et al., 2008), FleCSI offers28

greater extensibility and finer runtime control, placing it at the intersection of portability,29

scalability, and modern software design for scientific computing.30

Software description31

FleCSI is designed to abstract away complexity while offering fine control for high-performance32

computing. The FleCSI runtime system manages initialization, execution, and shutdown. As33

presented in Figure 1, the FleCSI runtime supports backends such as Legion (Bauer et al.,34

2012), HPX (Kaiser et al., 2009, 2020), MPI (Message Passing Interface Forum, 2025), and35

Kokkos (Edwards et al., 2014), enabling code to remain portable across a variety of systems36

without manually handling the execution environment.37

FleCSI’s programming model is based on a hierarchy of parallelism: sequential, task-parallel,38

and data-parallel. The relationships among these is illustrated in Figure 2:39

• Control points (CP) define an application’s sequential backbone.40

• Actions (A) specify a directed acyclic graph of high-level operations and their dependen-41

cies.42

• Tasks are functions that operate on data distributed across address spaces.43

• Point tasks (PT) are individual instances of a task that operate on a local fragment of a44

distributed data structure.45

• Kernels (K) process a block of local data in a data-parallel fashion on a CPU or GPU.46

Task Task

Main

CP CP CP CP

Cycle

A A A

A

A

A

A

PT PT PT PT PT PT PT PT

K K K K K K K K K K K K

Control model
• main
• control points
• actions

Execution model
• tasks
• point tasks
• kernels

Hardware
• CPU, GPU, OpenMP

Figure 2: FleCSI control and execution models.

FleCSI’s control model comprises control points and actions and determines what work is47

Bergen et al. (2025). FleCSI: Flexible Computational Science Infrastructure. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 8756.
https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
performed and in what order. FleCSI’s execution model, comprising tasks, point tasks, and48

kernels, governs where and how that work actually runs. FleCSI’s data model, not shown in49

Figure 2, governs how data are distributed and accessed.50

Control model51

Control points specify an application’s sequential control flow and can include conditional52

branches. For example, one control point may represent “initialization”, another “repetition53

until convergence”, and a third “finalization”.54

Control points provide hooks for a directed acyclic graph (DAG) of actions to be attached. An55

action is a sequential function that defines an application’s core numerics or physics routines56

such as “hydrodynamics” or “viscosity”. A new action can be incorporated into an application57

by specifying its direct dependents and dependencies (control points or other actions). For58

example, if an existing application defines a “solver” action, a new developer later can create a59

“preconditioner” action and insert it before the solver in the DAG without having to modify60

any other code or interfaces. By walking the DAG in topological order, FleCSI ensures a valid61

program execution.62

Execution model63

Actions spawn tasks, which are functions that are distributed within and across the nodes of64

the compute cluster and that complete asynchronously. In a computational-science application,65

a task typically represents updates to a data structure, such as to perform mesh stiffening and66

relaxing. A task declaration includes the fields of a distributed data structure that it will access67

(e.g., the cells, edges, and vertices of an unstructured mesh) and the access rights it requires68

on each field: read only, write only, or read/write. Tasks are run concurrently according to69

field data dependencies. For example, if task A reads 𝑥 and writes 𝑦, task B reads 𝑥 and70

writes 𝑧, and task C reads 𝑦 and writes 𝑤, then the FleCSI runtime will execute tasks A and B71

concurrently but require that task A finish before task C can start.72

Execution is distributed across logical units called colors. Colors are analogous to MPI ranks but73

do not need to map 1:1 to processes. Rather, the application chooses an appropriate number74

of colors for each task launch. If colors outnumber processes then some processes simply75

handle more than one color. Each color is handled by exactly one point task—an individual76

instance of a task. While point tasks are executed on CPUs, the data for readable fields are77

preloaded into a specified memory space (CPU NUMA domain or GPU device memory), and78

the data for writable fields automatically will be communicated to dependent tasks.79

Point tasks process their data by launching data-parallel kernels that operate on the memory80

space in which the field data was placed. In a computational-science application, these typically81

perform element updates such as incrementing position, momentum, energy, etc. Kernel can82

execute in parallel on GPUs, in parallel on CPUs (using OpenMP threads), or serially on CPUs.83

Kernel code is portable across these three forms of execution; no code modifications are needed84

to dispatch a kernel to a CPU versus a GPU.85

Data model86

FleCSI provides several topology types—skeletons of distributed data structures—that applica-87

tions use to represent physical quantities and their relationships:88

• topo::unstructured supports graph-based meshes and is suitable for finite element or89

finite volume methods.90

• topo::narray provides structured 𝑛-dimensional grids with support for boundary condi-91

tions and periodicity, making it ideal for Eulerian hydrodynamics.92

• topo::ntree organizes data in a hashed tree structure that enables fast neighbor searches93

and is appropriate for particle-based simulations and adaptive mesh refinement.94

Bergen et al. (2025). FleCSI: Flexible Computational Science Infrastructure. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 8756.
https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
Although topology data are distributed, all communication and synchronization is implicit and95

is based on the access rights associated with each field. (See Execution model above.) Fields96

can be defined with several layouts such as dense (arrays), ragged (vectors), sparse (maps), or97

particle (buffers).98

Acknowledgments99

The FleCSI project is supported by the U.S. Department of Energy through Los Alamos100

National Laboratory (LANL). Los Alamos National Laboratory is operated by Triad National101

Security, LLC, for the National Nuclear Security Administration of the U.S. Department of102

Energy (contract no. 89233218CNA000001). This paper has been assigned a Los Alamos103

Unlimited Release number of LA-UR-25-25479.104

The work reported in this paper would not have been possible without close collaborations105

with the Legion and HPX teams and LANL’s Ristra project, FleCSI’s initial “customer”.106

References107

Bauer, M., Treichler, S., Slaughter, E., & Aiken, A. (2012). Legion: Expressing locality and108

independence with logical regions. SC’12: Proceedings of the International Conference on109

High Performance Computing, Networking, Storage and Analysis, 1–11. https://doi.org/110

10.1109/SC.2012.71111

Bergen, B., Demeshko, I., Ferenbaugh, C., Herring, D., Lo, L.-T., Loiseau, J., Ray, N.,112

& Reisner, A. (2021). FleCSI 2.0: The flexible computational science infrastructure113

project. European Conference on Parallel Processing, 480–495. https://doi.org/10.1007/114

978-3-031-06156-1_38115

Edwards, H. C., Trott, C. R., & Sunderland, D. (2014). Kokkos: Enabling manycore perfor-116

mance portability through polymorphic memory access patterns. Journal of Parallel and117

Distributed Computing, 74(12), 3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003118

Kaiser, H., Brodowicz, M., & Sterling, T. (2009). ParalleX: An advanced parallel execu-119

tion model for scaling-impaired applications. 2009 International Conference on Parallel120

Processing Workshops, 394–401. https://doi.org/10.1109/icppw.2009.14121

Kaiser, H., Diehl, P., Lemoine, A. S., Lelbach, B. A., Amini, P., Berge, A., Biddiscombe, J.,122

Brandt, S. R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkhahan, A., Reverdell,123

A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., & Zhang, T. (2020). HPX—the C++124

standard library for parallelism and concurrency. Journal of Open Source Software, 5(53),125

2352. https://doi.org/10.21105/joss.02352126

Meng, Q., Humphrey, A., & Berzins, M. (2012). The Uintah framework: A unified hetero-127

geneous task scheduling and runtime system. 2012 SC Companion: High Performance128

Computing, Networking, Storage and Analysis (SCC), 2441–2448. https://doi.org/10.129

1109/SCC.2012.6674233130

Message Passing Interface Forum. (2025). MPI: A message-passing interface standard version131

5.0. https://www.mpi-forum.org/docs/mpi-5.0/mpi50-report.pdf132

Pérache, M., Jourdren, H., & Namyst, R. (2008). MPC: A unified parallel runtime for133

clusters of NUMA machines. Euro-Par 2008 – Parallel Processing, 5168, 78–88. https:134

//doi.org/10.1007/978-3-540-85451-7_9135

Bergen et al. (2025). FleCSI: Flexible Computational Science Infrastructure. Journal of Open Source Software, ¿VOL?(¿ISSUE?), 8756.
https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/978-3-031-06156-1_38
https://doi.org/10.1007/978-3-031-06156-1_38
https://doi.org/10.1007/978-3-031-06156-1_38
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/icppw.2009.14
https://doi.org/10.21105/joss.02352
https://doi.org/10.1109/SCC.2012.6674233
https://doi.org/10.1109/SCC.2012.6674233
https://doi.org/10.1109/SCC.2012.6674233
https://www.mpi-forum.org/docs/mpi-5.0/mpi50-report.pdf
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Software description
	Control model
	Execution model
	Data model

	Acknowledgments
	References

