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Summary18

FleCSI (Bergen et al., 2021) is a modern C++ framework designed to support the development19

of multiphysics simulations. It provides a task-based programming model that unifies shared-20

and distributed-memory programming. FleCSI provides high performance, flexibility, and21

portability across heterogeneous computing architectures.22
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Figure 1: The FleCSI software ecosystem
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DRAFT
Statement of need23

FleCSI is designed to support the development of multiphysics simulations through a flexi-24

ble, task-based programming model that enables performance portability across distributed,25

heterogeneous systems. It advances prior work by integrating dynamic task scheduling, data26

abstraction, and backend interoperability within a unified C++ framework. Compared to27

related systems like Uintah (Meng et al., 2012) and MPC (Pérache et al., 2008), FleCSI offers28

greater extensibility and finer runtime control, placing it at the intersection of portability,29

scalability, and modern software design for scientific computing.30

Software description31

FleCSI is designed to abstract away complexity while offering fine control for high-performance32

computing. The FleCSI runtime system manages initialization, execution, and shutdown. As33

presented in Figure 1, the FleCSI runtime supports backends such as Legion (Bauer et al.,34

2012), HPX (Kaiser et al., 2009, 2020), MPI (Message Passing Interface Forum, 2025), and35

Kokkos (Edwards et al., 2014), enabling code to remain portable across a variety of systems36

without manually handling the execution environment.37

FleCSI’s programming model is based on a hierarchy of parallelism: sequential, task-parallel,38

and data-parallel. The relationships among these is illustrated in Figure 2:39

• Control points (CP) define an application’s sequential backbone.40

• Actions (A) specify a directed acyclic graph of high-level operations and their dependen-41

cies.42

• Tasks are functions that operate on data distributed across address spaces.43

• Point tasks (PT) are individual instances of a task that operate on a local fragment of a44

distributed data structure.45

• Kernels (K) process a block of local data in a data-parallel fashion on a CPU or GPU.46
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Figure 2: FleCSI control and execution models.

FleCSI’s control model comprises control points and actions and determines what work is47
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performed and in what order. FleCSI’s execution model, comprising tasks, point tasks, and48

kernels, governs where and how that work actually runs. FleCSI’s data model, not shown in49

Figure 2, governs how data are distributed and accessed.50

Control model51

Control points specify an application’s sequential control flow and can include conditional52

branches. For example, one control point may represent “initialization”, another “repetition53

until convergence”, and a third “finalization”.54

Control points provide hooks for a directed acyclic graph (DAG) of actions to be attached. An55

action is a sequential function that defines an application’s core numerics or physics routines56

such as “hydrodynamics” or “viscosity”. A new action can be incorporated into an application57

by specifying its direct dependents and dependencies (control points or other actions). For58

example, if an existing application defines a “solver” action, a new developer later can create a59

“preconditioner” action and insert it before the solver in the DAG without having to modify60

any other code or interfaces. By walking the DAG in topological order, FleCSI ensures a valid61

program execution.62

Execution model63

Actions spawn tasks, which are functions that are distributed within and across the nodes of64

the compute cluster and that complete asynchronously. In a computational-science application,65

a task typically represents updates to a data structure, such as to perform mesh stiffening and66

relaxing. A task declaration includes the fields of a distributed data structure that it will access67

(e.g., the cells, edges, and vertices of an unstructured mesh) and the access rights it requires68

on each field: read only, write only, or read/write. Tasks are run concurrently according to69

field data dependencies. For example, if task A reads 𝑥 and writes 𝑦, task B reads 𝑥 and70

writes 𝑧, and task C reads 𝑦 and writes 𝑤, then the FleCSI runtime will execute tasks A and B71

concurrently but require that task A finish before task C can start.72

Execution is distributed across logical units called colors. Colors are analogous to MPI ranks but73

do not need to map 1:1 to processes. Rather, the application chooses an appropriate number74

of colors for each task launch. If colors outnumber processes then some processes simply75

handle more than one color. Each color is handled by exactly one point task—an individual76

instance of a task. While point tasks are executed on CPUs, the data for readable fields are77

preloaded into a specified memory space (CPU NUMA domain or GPU device memory), and78

the data for writable fields automatically will be communicated to dependent tasks.79

Point tasks process their data by launching data-parallel kernels that operate on the memory80

space in which the field data was placed. In a computational-science application, these typically81

perform element updates such as incrementing position, momentum, energy, etc. Kernel can82

execute in parallel on GPUs, in parallel on CPUs (using OpenMP threads), or serially on CPUs.83

Kernel code is portable across these three forms of execution; no code modifications are needed84

to dispatch a kernel to a CPU versus a GPU.85

Data model86

FleCSI provides several topology types—skeletons of distributed data structures—that applica-87

tions use to represent physical quantities and their relationships:88

• topo::unstructured supports graph-based meshes and is suitable for finite element or89

finite volume methods.90

• topo::narray provides structured 𝑛-dimensional grids with support for boundary condi-91

tions and periodicity, making it ideal for Eulerian hydrodynamics.92

• topo::ntree organizes data in a hashed tree structure that enables fast neighbor searches93

and is appropriate for particle-based simulations and adaptive mesh refinement.94
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Although topology data are distributed, all communication and synchronization is implicit and95

is based on the access rights associated with each field. (See Execution model above.) Fields96

can be defined with several layouts such as dense (arrays), ragged (vectors), sparse (maps), or97

particle (buffers).98
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